CONTENTS

1 **INTRODUCTION AND OVERVIEW OF MANUFACTURING** 1
 1.1 What Is Manufacturing? 2
 1.2 Materials in Manufacturing 9
 1.3 Manufacturing Processes 11
 1.4 Production Systems 18
 1.5 Manufacturing Economics 22
 1.6 Recent Developments in Manufacturing 27

Part I Material Properties and Product Attributes 36

2 **THE NATURE OF MATERIALS** 36
 2.1 Atomic Structure and the Elements 37
 2.2 Bonding between Atoms and Molecules 39
 2.3 Crystalline Structures 41
 2.4 Noncrystalline (Amorphous) Structures 47
 2.5 Engineering Materials 49

3 **MECHANICAL PROPERTIES OF MATERIALS** 52
 3.1 Stress–Strain Relationships 52
 3.2 Hardness 67
 3.3 Effect of Temperature on Properties 71
 3.4 Fluid Properties 73
 3.5 Viscoelastic Behavior of Polymers 76

4 **PHYSICAL PROPERTIES OF MATERIALS** 82
 4.1 Volumetric and Melting Properties 82
 4.2 Thermal Properties 85
 4.3 Mass Diffusion 87
 4.4 Electrical Properties 89
 4.5 Electrochemical Processes 91

5 **ENGINEERING MATERIALS** 94
 5.1 Metals and Their Alloys 94
 5.2 Ceramics 108
 5.3 Polymers 115
 5.4 Composites 123

6 **DIMENSIONS, SURFACES, AND THEIR MEASUREMENT** 131
 6.1 Dimensions, Tolerances, and Related Attributes 132
 6.2 Measuring Instruments and Gages 133
 6.3 Surfaces 142
 6.4 Measurement of Surfaces 148
 6.5 Effect of Manufacturing Processes 150

Part II Solidification Processes

7 **FUNDAMENTALS OF METAL CASTING** 154
 7.1 Overview of Casting Technology 157
 7.2 Heating and Pouring 159
 7.3 Solidification and Cooling 163

8 **METAL CASTING PROCESSES** 174
 8.1 Sand Casting 174
 8.2 Other Expendable-Mold Casting Processes 180
 8.3 Permanent-Mold Casting Processes 186
 8.4 Foundry Practice 196
 8.5 Casting Quality 200
 8.6 Metals for Casting 202
 8.7 Product Design Considerations 204

9 **GLASSWORKING** 209
 9.1 Raw Materials Preparation and Melting 209
 9.2 Shaping Processes in Glassworking 210
 9.3 Heat Treatment and Finishing 216
 9.4 Product Design Considerations 217
10 SHAPING PROCESSES FOR PLASTICS 219
10.1 Properties of Polymer Melts 221
10.2 Extrusion 223
10.3 Production of Sheet and Film 233
10.4 Fiber and Filament Production (Spinning) 236
10.5 Coating Processes 237
10.6 Injection Molding 238
10.7 Compression and Transfer Molding 249
10.8 Blow Molding and Rotational Molding 250
10.9 Thermoforming 256
10.10 Casting 260
10.11 Polymer Foam Processing and Forming 261
10.12 Product Design Considerations 263

11 PROCESSING OF POLYMER MATRIX COMPOSITES AND RUBBER 268
11.1 Overview of PMC Processing 269
11.2 Open Mold Processes 272
11.3 Closed Mold Processes 276
11.4 Other PMC Shaping Processes 279
11.5 Rubber Processing and Shaping 284
11.6 Manufacture of Tires and Other Rubber Products 289

Part III Particulate Processing of Metals and Ceramics 295

12 POWDER METALLURGY 295
12.1 Characterization of Engineering Powders 297
12.2 Production of Metallic Powders 301
12.3 Conventional Pressing and Sintering 303
12.4 Alternative Pressing and Sintering Techniques 310
12.5 Materials and Products for Powder Metallurgy 313
12.6 Design Considerations in Powder Metallurgy 314

13 PROCESSING OF CERAMICS AND CERMETS 319
13.1 Processing of Traditional Ceramics 320
13.2 Processing of New Ceramics 327
13.3 Processing of Cermets 330
13.4 Product Design Considerations 332

Part IV Metal Forming and Sheet Metalworking 335

14 FUNDAMENTALS OF METAL FORMING 335
14.1 Overview of Metal Forming 335
14.2 Material Behavior in Metal Forming 338
14.3 Temperature in Metal Forming 340
14.4 Strain Rate Sensitivity 342
14.5 Friction and Lubrication in Metal Forming 344

15 BULK DEFORMATION PROCESSES IN METALWORKING 347
15.1 Rolling 348
15.2 Other Deformation Processes Related to Rolling 356
15.3 Forging 358
15.4 Other Deformation Processes Related to Forging 370
15.5 Extrusion 375
15.6 Wire and Bar Drawing 386

16 SHEET METALWORKING 398
16.1 Cutting Operations 399
16.2 Bending Operations 405
16.3 Drawing 410
16.4 Other Sheet-Metal-Forming Operations 417
16.5 Dies and Presses for Sheet-Metal Processes 420
16.6 Sheet-Metal Operations Not Performed on Presses 427
16.7 Bending of Tube Stock 433

Part V Material Removal Processes 438

17 THEORY OF METAL MACHINING 438
17.1 Overview of Machining Technology 440
17.2 Theory of Chip Formation in Metal Machining 444
17.3 Force Relationships and the Merchant Equation 448
17.4 Power and Energy Relationships in Machining 454
17.5 Cutting Temperature 456

18 MACHINING OPERATIONS AND MACHINE TOOLS 462
18.1 Machining and Part Geometry 462
18.2 Turning and Related Operations 466
18.3 Drilling and Related Operations 475
18.4 Milling 480
18.5 Machining Centers and Turning Centers 488
18.6 Other Machining Operations 490
18.7 Machining Operations for Special Geometries 495
18.8 High-Speed Machining 503

19 CUTTING-TOOL TECHNOLOGY 508
19.1 Tool Life 508
19.2 Tool Materials 515
19.3 Tool Geometry 525
19.4 Cutting Fluids 535

20 ECONOMIC AND PRODUCT DESIGN CONSIDERATIONS IN MACHINING 543
20.1 Machinability 543
20.2 Tolerances and Surface Finish 546
20.3 Selection of Cutting Conditions 550
20.4 Product Design Considerations in Machining 557

21 GRINDING AND OTHER ABRASIVE PROCESSES 562
21.1 Grinding 562
21.2 Related Abrasive Processes 580

22 NONTRADITIONAL MACHINING AND THERMAL CUTTING PROCESSES 586
22.1 Mechanical Energy Processes 587
22.2 Electrochemical Machining Processes 591

22.3 Thermal Energy Processes 595
22.4 Chemical Machining 604
22.5 Application Considerations 610

Part VI Property Enhancing and Surface Processing Operations 616

23 HEAT TREATMENT OF METALS 616
23.1 Annealing 617
23.2 Martensite Formation in Steel 617
23.3 Precipitation Hardening 621
23.4 Surface Hardening 623
23.5 Heat Treatment Methods and Facilities 624

24 SURFACE PROCESSING OPERATIONS 628
24.1 Industrial Cleaning Processes 629
24.2 Diffusion and Ion Implantation 633
24.3 Plating and Related Processes 635
24.4 Conversion Coating 639
24.5 Vapor Deposition Processes 641
24.6 Organic Coatings 647
24.7 Porcelain Enameling and Other Ceramic Coatings 650
24.8 Thermal and Mechanical Coating Processes 651

Part VII Joining and Assembly Processes 655

25 FUNDAMENTALS OF WELDING 655
25.1 Overview of Welding Technology 657
25.2 The Weld Joint 660
25.3 Physics of Welding 662
25.4 Features of a Fusion-Welded Joint 667

26 WELDING PROCESSES 671
26.1 Arc Welding 671
26.2 Resistance Welding 682
26.3 Oxyfuel Gas Welding 689
26.4 Other Fusion-Welding Processes 693
Contents

26.5 Solid-State Welding 696
26.6 Weld Quality 702
26.7 Weldability 706
26.8 Design Considerations in Welding 707

27 BRAZING, SOLDERING, AND ADHESIVE BONDING 712
27.1 Brazing 712
27.2 Soldering 719
27.3 Adhesive Bonding 723

28 MECHANICAL ASSEMBLY 730
28.1 Threaded Fasteners 731
28.2 Rivets and Eyelets 738
28.3 Assembly Methods Based on Interference Fits 739
28.4 Other Mechanical Fastening Methods 743
28.5 Molding Inserts and Integral Fasteners 744
28.6 Design for Assembly 746

Part VIII Special Processing and Assembly Technologies 751

29 RAPID PROTOTYPING AND ADDITIVE MANUFACTURING 751
29.1 Fundamentals of Rapid Prototyping and Additive Manufacturing 753
29.2 Additive Manufacturing Processes 756
29.3 Cycle Time and Cost Analysis 764
29.4 Additive Manufacturing Applications 768

30 PROCESSING OF INTEGRATED CIRCUITS 773
30.1 Overview of IC Processing 775
30.2 Silicon Processing 778
30.3 Lithography 783
30.4 Layer Processes Used in IC Fabrication 787
30.5 Integrating the Fabrication Steps 794
30.6 IC Packaging 796
30.7 Yields in IC Processing 802

31 ELECTRONICS ASSEMBLY AND PACKAGING 807
31.1 Electronics Packaging 807
31.2 Printed Circuit Boards 809
31.3 Printed Circuit Board Assembly 818
31.4 Electrical Connector Technology 826

32 MICROFABRICATION TECHNOLOGIES 831
32.1 Microsystem Products 831
32.2 Microfabrication Processes 838

33 NANOFABRICATION TECHNOLOGIES 848
33.1 Nanotechnology Products and Applications 849
33.2 Introduction to Nanoscience 854
33.3 Nanofabrication Processes 858

Part IX Manufacturing Systems 867

34 AUTOMATION TECHNOLOGIES FOR MANUFACTURING SYSTEMS 867
34.1 Automation Fundamentals 868
34.2 Hardware for Automation 871
34.3 Computer Numerical Control 876
34.4 Industrial Robotics 889

35 INTEGRATED MANUFACTURING SYSTEMS 899
35.1 Material Handling 899
35.2 Fundamentals of Production Lines 902
35.3 Manual Assembly Lines 904
35.4 Automated Production Lines 908
35.5 Cellular Manufacturing 913
35.6 Flexible Manufacturing Systems and Cells 918
35.7 Computer Integrated Manufacturing 924

Part X Manufacturing Support Systems 930

36 PROCESS PLANNING AND PRODUCTION CONTROL 930
36.1 Process Planning 932
36.2 Other Manufacturing Engineering Functions 940
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36.3 Production Planning and Control 944</td>
<td>375 Inspection Principles 974</td>
</tr>
<tr>
<td>36.4 Just-In-Time Delivery Systems 951</td>
<td>376 Modern Inspection Technologies 977</td>
</tr>
<tr>
<td>36.5 Lean Production 954</td>
<td></td>
</tr>
<tr>
<td>37 QUALITY CONTROL AND INSPECTION 960</td>
<td>APPENDIX 987</td>
</tr>
<tr>
<td>37.1 Product Quality 960</td>
<td>INDEX 991</td>
</tr>
<tr>
<td>37.2 Process Capability and Tolerances 961</td>
<td></td>
</tr>
<tr>
<td>37.3 Statistical Process Control 963</td>
<td></td>
</tr>
<tr>
<td>37.4 Quality Programs in Manufacturing 968</td>
<td></td>
</tr>
</tbody>
</table>