Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems
Second Edition

Paul D. Groves
Contents

Preface xvii
Acknowledgments xix

CHAPTER 1
Introduction
1.1 Fundamental Concepts 1
1.2 Dead Reckoning 5
1.3 Position Fixing 7
1.3.1 Position-Fixing Methods 7
1.3.2 Signal-Based Positioning 12
1.3.3 Environmental Feature Matching 14
1.4 The Navigation System 15
1.4.1 Requirements 16
1.4.2 Context 17
1.4.3 Integration 18
1.4.4 Aiding 18
1.4.5 Assistance and Cooperation 19
1.4.6 Fault Detection 20
1.5 Overview of the Book 20
References 22

CHAPTER 2
Coordinate Frames, Kinematics, and the Earth 23
2.1 Coordinate Frames 23
2.1.1 Earth-Centered Inertial Frame 25
2.1.2 Earth-Centered Earth-Fixed Frame 26
2.1.3 Local Navigation Frame 27
2.1.4 Local Tangent-Plane Frame 28
2.1.5 Body Frame 28
2.1.6 Other Frames 29
2.2 Attitude, Rotation, and Resolving Axes Transformations 30
2.2.1 Euler Attitude 33
2.2.2 Coordinate Transformation Matrix 35
2.2.3 Quaternion Attitude 40
2.2.4 Rotation Vector 42
2.3 Kinematics 43
5.5.4 Effects of Sensor Sampling Interval and Vibration 189
5.5.5 Design Tradeoffs 195
5.6 Initialization and Alignment 195
5.6.1 Position and Velocity Initialization 196
5.6.2 Attitude Initialization 196
5.6.3 Fine Alignment 200
5.7 INS Error Propagation 203
5.7.1 Short-Term Straight-Line Error Propagation 204
5.7.2 Medium- and Long-Term Error Propagation 209
5.7.3 Maneuver-Dependent Errors 212
5.8 Indexed IMU 214
5.9 Partial IMU 215
References 216

CHAPTER 6
Dead Reckoning, Attitude, and Height Measurement 217
6.1 Attitude Measurement 217
6.1.1 Magnetic Heading 218
6.1.2 Marine Gyrocompass 222
6.1.3 Strapdown Yaw-Axis Gyro 223
6.1.4 Heading from Trajectory 225
6.1.5 Integrated Heading Determination 226
6.1.6 Accelerometer Leveling and Tilt Sensors 226
6.1.7 Horizon Sensing 227
6.1.8 Attitude and Heading Reference System 228
6.2 Height and Depth Measurement 229
6.2.1 Barometric Altimeter 230
6.2.2 Depth Pressure Sensor 231
6.2.3 Radar Altimeter 232
6.3 Odometry 233
6.3.1 Linear Odometry 234
6.3.2 Differential Odometry 238
6.3.3 Integrated Odometry and Partial IMU 239
6.4 Pedestrian Dead Reckoning Using Step Detection 240
6.5 Doppler Radar and Sonar 245
6.6 Other Dead-Reckoning Techniques 249
6.6.1 Correlation-Based Velocity Measurement 249
6.6.2 Air Data 249
6.6.3 Ship’s Speed Log 250
References 250

CHAPTER 7
Principles of Radio Positioning 255
7.1 Radio Positioning Configurations and Methods 255
7.1.1 Self-Positioning and Remote Positioning 255
7.1.2 Relative Positioning 257
Contents

7.1.3 Proximity 258
7.1.4 Ranging 260
7.1.5 Angular Positioning 269
7.1.6 Pattern Matching 271
7.1.7 Doppler Positioning 274
7.2 Positioning Signals 276
7.2.1 Modulation Types 276
7.2.2 Radio Spectrum 277
7.3 User Equipment 279
 7.3.1 Architecture 279
 7.3.2 Signal Timing Measurement 280
 7.3.3 Position Determination from Ranging 282
7.4 Propagation, Error Sources, and Positioning Accuracy 287
 7.4.1 Ionosphere, Troposphere, and Surface Propagation Effects 287
 7.4.2 Attenuation, Reflection, Multipath, and Diffraction 288
 7.4.3 Resolution, Noise, and Tracking Errors 290
 7.4.4 Transmitter Location and Timing Errors 292
 7.4.5 Effect of Signal Geometry 292
References 297

CHAPTER 8

GNSS: Fundamentals, Signals, and Satellites 299

8.1 Fundamentals of Satellite Navigation 300
 8.1.1 GNSS Architecture 300
 8.1.2 Signals and Range Measurement 303
 8.1.3 Positioning 307
 8.1.4 Error Sources and Performance Limitations 309
8.2 The Systems 312
 8.2.1 Global Positioning System 312
 8.2.2 GLONASS 313
 8.2.3 Galileo 313
 8.2.4 Beidou 314
 8.2.5 Regional Systems 314
 8.2.6 Augmentation Systems 314
 8.2.7 System Compatibility 316
8.3 GNSS Signals 317
 8.3.1 Signal Types 318
 8.3.2 Global Positioning System 320
 8.3.3 GLONASS 323
 8.3.4 Galileo 324
 8.3.5 Beidou 326
 8.3.6 Regional Systems 326
 8.3.7 Augmentation Systems 327
8.4 Navigation Data Messages 327
 8.4.1 GPS 327
 8.4.2 GLONASS 328
8.4.3 Galileo 329
8.4.4 SBAS 329
8.4.5 Time Base Synchronization 329
8.5 Satellite Orbits and Geometry 330
8.5.1 Satellite Orbits 330
8.5.2 Satellite Position and Velocity 332
8.5.3 Range, Range Rate, and Line of Sight 339
8.5.4 Elevation and Azimuth 344
References 345

CHAPTER 9

9.1 Receiver Hardware and Antenna 350
9.1.1 Antennas 350
9.1.2 Reference Oscillator 351
9.1.3 Receiver Front End 352
9.1.4 Baseband Signal Processor 355
9.2 Ranging Processor 367
9.2.1 Acquisition 367
9.2.2 Code Tracking 372
9.2.3 Carrier Tracking 377
9.2.4 Tracking Lock Detection 384
9.2.5 Navigation-Message Demodulation 385
9.2.6 Carrier-Power-to-Noise-Density Measurement 386
9.2.7 Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements 387
9.3 Range Error Sources 389
9.3.1 Ephemeris Prediction and Satellite Clock Errors 390
9.3.2 Ionosphere and Troposphere Propagation Errors 391
9.3.3 Tracking Errors 395
9.3.4 Multipath, Nonline-of-Sight, and Diffraction 401
9.4 Navigation Processor 407
9.4.1 Single-Epoch Navigation Solution 409
9.4.2 Filtered Navigation Solution 413
9.4.3 Signal Geometry and Navigation Solution Accuracy 424
9.4.4 Position Error Budget 429
References 431

CHAPTER 10

10.1 Differential GNSS 437
10.1.1 Spatial and Temporal Correlation of GNSS Errors 438
10.1.2 Local and Regional Area DGNSS 439
10.1.3 Wide Area DGNSS and Precise Point Positioning 440
10.1.4 Relative GNSS 441
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination</td>
<td>442</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Principles of Accumulated Delta Range Positioning</td>
<td>443</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Single-Epoch Navigation Solution Using Double-Differenced ADR</td>
<td>446</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Geometry-Based Integer Ambiguity Resolution</td>
<td>447</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Multifrequency Integer Ambiguity Resolution</td>
<td>449</td>
</tr>
<tr>
<td>10.2.5</td>
<td>GNSS Attitude Determination</td>
<td>450</td>
</tr>
<tr>
<td>10.3</td>
<td>Interference Rejection and Weak Signal Processing</td>
<td>451</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Sources of Interference, Jamming, and Attenuation</td>
<td>452</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Antenna Systems</td>
<td>452</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Receiver Front-End Filtering</td>
<td>453</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Extended Range Tracking</td>
<td>454</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Receiver Sensitivity</td>
<td>455</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Combined Acquisition and Tracking</td>
<td>456</td>
</tr>
<tr>
<td>10.3.7</td>
<td>Vector Tracking</td>
<td>456</td>
</tr>
<tr>
<td>10.4</td>
<td>Mitigation of Multipath Interference and Nonline-of-Sight Reception</td>
<td>458</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Antenna-Based Techniques</td>
<td>459</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Receiver-Based Techniques</td>
<td>460</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Navigation-Processor-Based Techniques</td>
<td>461</td>
</tr>
<tr>
<td>10.5</td>
<td>Aiding, Assistance, and Orbit Prediction</td>
<td>462</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Acquisition and Velocity Aiding</td>
<td>463</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Assisted GNSS</td>
<td>464</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Orbit Prediction</td>
<td>465</td>
</tr>
<tr>
<td>10.6</td>
<td>Shadow Matching</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>467</td>
</tr>
</tbody>
</table>

CHAPTER 11

Long- and Medium-Range Radio Navigation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Aircraft Navigation Systems</td>
<td>473</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Distance Measuring Equipment</td>
<td>473</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Range-Bearing Systems</td>
<td>474</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Nondirectional Beacons</td>
<td>479</td>
</tr>
<tr>
<td>11.1.4</td>
<td>JTIDS/MIDS Relative Navigation</td>
<td>480</td>
</tr>
<tr>
<td>11.1.5</td>
<td>Future Air Navigation Systems</td>
<td>481</td>
</tr>
<tr>
<td>11.2</td>
<td>Enhanced Loran</td>
<td>481</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Signals</td>
<td>482</td>
</tr>
<tr>
<td>11.2.2</td>
<td>User Equipment and Positioning</td>
<td>484</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Error Sources</td>
<td>487</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Differential Loran</td>
<td>488</td>
</tr>
<tr>
<td>11.3</td>
<td>Phone Positioning</td>
<td>488</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Proximity and Pattern Matching</td>
<td>489</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Ranging</td>
<td>490</td>
</tr>
<tr>
<td>11.4</td>
<td>Other Systems</td>
<td>491</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Iridium Positioning</td>
<td>491</td>
</tr>
<tr>
<td>Chapter 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>13.2.5</td>
<td>Sonar TRN</td>
<td></td>
</tr>
<tr>
<td>13.2.6</td>
<td>Barometric TRN</td>
<td></td>
</tr>
<tr>
<td>13.2.7</td>
<td>Terrain Database Height Aiding</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>Image-Based Navigation</td>
<td></td>
</tr>
<tr>
<td>13.3.1</td>
<td>Imaging Sensors</td>
<td></td>
</tr>
<tr>
<td>13.3.2</td>
<td>Image Feature Comparison</td>
<td></td>
</tr>
<tr>
<td>13.3.3</td>
<td>Position Fixing Using Individual Features</td>
<td></td>
</tr>
<tr>
<td>13.3.4</td>
<td>Position Fixing by Whole-Image Matching</td>
<td></td>
</tr>
<tr>
<td>13.3.5</td>
<td>Visual Odometry</td>
<td></td>
</tr>
<tr>
<td>13.3.6</td>
<td>Feature Tracking</td>
<td></td>
</tr>
<tr>
<td>13.3.7</td>
<td>Stellar Navigation</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>Other Feature-Matching Techniques</td>
<td></td>
</tr>
<tr>
<td>13.4.1</td>
<td>Gravity Gradiometry</td>
<td></td>
</tr>
<tr>
<td>13.4.2</td>
<td>Magnetic Field Variation</td>
<td></td>
</tr>
<tr>
<td>13.4.3</td>
<td>Celestial X-Ray Sources</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INS/GNSS Integration</td>
<td>559</td>
</tr>
<tr>
<td>14.1</td>
<td>Integration Architectures</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Correction of the Inertial Navigation Solution</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Loosely Coupled Integration</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Tightly Coupled Integration</td>
</tr>
<tr>
<td>14.1.4</td>
<td>GNSS Aiding</td>
</tr>
<tr>
<td>14.1.5</td>
<td>Deeply Coupled Integration</td>
</tr>
<tr>
<td>14.2</td>
<td>System Model and State Selection</td>
</tr>
<tr>
<td>14.2.1</td>
<td>State Selection and Observability</td>
</tr>
<tr>
<td>14.2.2</td>
<td>INS State Propagation in an Inertial Frame</td>
</tr>
<tr>
<td>14.2.3</td>
<td>INS State Propagation in an Earth Frame</td>
</tr>
<tr>
<td>14.2.4</td>
<td>INS State Propagation Resolved in a Local Navigation Frame</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Additional IMU Error States</td>
</tr>
<tr>
<td>14.2.6</td>
<td>INS System Noise</td>
</tr>
<tr>
<td>14.2.7</td>
<td>GNSS State Propagation and System Noise</td>
</tr>
<tr>
<td>14.2.8</td>
<td>State Initialization</td>
</tr>
<tr>
<td>14.3</td>
<td>Measurement Models</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Loosely Coupled Integration</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Tightly Coupled Integration</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Deeply Coupled Integration</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Estimation of Attitude and Instrument Errors</td>
</tr>
<tr>
<td>14.4</td>
<td>Advanced INS/GNSS Integration</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Differential GNSS</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Carrier-Phase Positioning</td>
</tr>
<tr>
<td>14.4.3</td>
<td>GNSS Attitude</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Large Heading Errors</td>
</tr>
</tbody>
</table>
14.4.5 Advanced IMU Error Modeling 621
14.4.6 Smoothing 622
References 622

CHAPTER 15
INS Alignment, Zero Updates, and Motion Constraints 627
15.1 Transfer Alignment 627
 15.1.1 Conventional Measurement Matching 629
 15.1.2 Rapid Transfer Alignment 631
 15.1.3 Reference Navigation System 633
15.2 Quasi-Stationary Alignment 634
 15.2.1 Coarse Alignment 634
 15.2.2 Fine Alignment 637
15.3 Zero Updates 638
 15.3.1 Stationary-Condition Detection 638
 15.3.2 Zero Velocity Update 639
 15.3.3 Zero Angular Rate Update 640
15.4 Motion Constraints 641
 15.4.1 Land Vehicle Constraints 641
 15.4.2 Pedestrian Constraints 643
 15.4.3 Ship and Boat Constraint 644
References 644

CHAPTER 16
Multisensor Integrated Navigation 647
16.1 Integration Architectures 647
 16.1.1 Cascaded Single-Epoch Integration 648
 16.1.2 Centralized Single-Epoch Integration 651
 16.1.3 Cascaded Filtered Integration 652
 16.1.4 Centralized Filtered Integration 654
 16.1.5 Federated Filtered Integration 655
 16.1.6 Hybrid Integration Architectures 658
 16.1.7 Total-State Kalman Filter Employing Prediction 659
 16.1.8 Error-State Kalman Filter 661
 16.1.9 Primary and Reversionary Moding 663
 16.1.10 Context-Adaptive Moding 665
16.2 Dead Reckoning, Attitude, and Height Measurement 666
 16.2.1 Attitude 667
 16.2.2 Height and Depth 673
 16.2.3 Odometry 674
 16.2.4 Pedestrian Dead Reckoning Using Step Detection 677
 16.2.5 Doppler Radar and Sonar 680
 16.2.6 Visual Odometry and Terrain-Referenced Dead Reckoning 682
16.3 Position-Fixing Measurements 682
 16.3.1 Position Measurement Integration 683
 16.3.2 Ranging Measurement Integration 685
16.3.3 Angular Measurement Integration 690
16.3.4 Line Fix Integration 694
16.3.5 Handling Ambiguous Measurements 695
16.3.6 Feature Tracking and Mapping 697
16.3.7 Aiding of Position-Fixing Systems 698
References 699

CHAPTER 17
Fault Detection, Integrity Monitoring, and Testing 701
17.1 Failure Modes 702
17.1.1 Inertial Navigation 702
17.1.2 Dead Reckoning, Attitude, and Height Measurement 702
17.1.3 GNSS 703
17.1.4 Terrestrial Radio Navigation 703
17.1.5 Environmental Feature Matching and Tracking 704
17.1.6 Integration Algorithm 704
17.1.7 Context 705
17.2 Range Checks 705
17.2.1 Sensor Outputs 705
17.2.2 Navigation Solution 706
17.2.3 Kalman Filter Estimates 706
17.3 Kalman Filter Measurement Innovations 706
17.3.1 Innovation Filtering 707
17.3.2 Innovation Sequence Monitoring 709
17.3.3 Remedying Biased State Estimates 711
17.4 Direct Consistency Checks 712
17.4.1 Measurement Consistency Checks and RAIM 713
17.4.2 Parallel Solutions 715
17.5 Infrastructure-Based Integrity Monitoring 719
17.6 Solution Protection and Performance Requirements 720
17.7 Testing 724
17.7.1 Field Trials 724
17.7.2 Recorded Data Testing 725
17.7.3 Laboratory Testing 725
17.7.4 Software Simulation 725
References 726

CHAPTER 18
Applications and Future Trends 729
18.1 Design and Development 729
18.2 Aviation 731
18.3 Guided Weapons and Small UAVs 733
18.4 Land Vehicle Applications 733
18.5 Rail Navigation 734
18.6 Marine Navigation 735
18.7 Underwater Navigation 737