Mathematics in Image Processing

Hongkai Zhao
Editor
Contents

Preface ix

Hongkai Zhao
Introduction 1

Bin Dong and Zuowei Shen
MRA-Based Wavelet Frames and Applications 7

Introduction 9

Lecture 1. Multiresolution analysis
1. Definitions and basics 13
2. Density of the union of V_n 15
3. Triviality of the intersections of V_n 17
4. Approximation 20

Lecture 2. MRA-based tight wavelet frames
1. Extension principles 27
2. Quasi-affine systems and associated algorithms 48
3. Higher dimension tight frame systems 58

Lecture 3. Pseudo-splines and tight frames
1. Definitions and basics 63
2. Wavelets from pseudo-splines 73
3. Regularity of pseudo-splines 81
4. Two lemmata 93

Lecture 4. Frame based image restorations
1. Modeling 100
2. Balanced approach 105
3. Analysis based approach 125

Lecture 5. Other applications of frames
1. Background and models 133
2. Frame based blind deconvolution 139
3. Frame based image segmentation 142
4. Scene reconstruction from range data 145

Bibliography 151
Michael Elad
Five Lectures on Sparse and Redundant Representations
Modelling of Images

Preface

Lecture 1. Introduction to sparse approximations - algorithms
1. Motivation and the sparse-coding problem
2. Greedy algorithms
3. Relaxation algorithms
4. A closer look at the unitary case

Lecture 2. Introduction to sparse approximations - theory
1. Dictionary properties
2. Theoretical guarantees - uniqueness for P_0
3. Equivalence of the MP and BP for the exact case
4. Theoretical guarantees - stability for (P_0^r)
5. Near-oracle performance in the noisy case

Lecture 3. Sparse and redundant representation modelling
1. Modelling data with sparse and redundant representations
2. The Sparseland prior
3. Processing Sparseland signals

Lecture 4. First steps in image processing
1. Image deblurring via iterative-shrinkage algorithms
2. Image denoising
3. Image inpainting
4. Dictionary learning

Lecture 5. Image processing - more practice
1. Image denoising with a learned dictionary
2. Image inpainting with dictionary learning
3. Image scale-up with a pair of dictionaries
4. Image compression using sparse representation
5. Summary

Bibliography

J. M. Teran, J. L. Hellrung, Jr. and J. Hegemann
Simulation of Elasticity, Biomechanics, and Virtual Surgery

Introduction

Real-time computing

Lecture 1. Introduction to continuum mechanics and elasticity
1. Kinematics
2. Basic balance laws
3. Elasticity and constitutive modeling
4. Equilibrium and weak form
5. 1D Elasticity
6. Inversion
7. Time stepping
<table>
<thead>
<tr>
<th>Lecture 2.</th>
<th>Numerical solutions of the equations of elasticity</th>
<th>221</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Numerical solution of Poisson’s equation via the finite element method</td>
<td>221</td>
</tr>
<tr>
<td>2.</td>
<td>Neo-Hookean elasticity with quasistatic evolution in dimension 1</td>
<td>224</td>
</tr>
<tr>
<td>3.</td>
<td>Neo-Hookean elasticity with backward Euler evolution in dimension 2</td>
<td>230</td>
</tr>
<tr>
<td>Lecture 3.</td>
<td>Supplemental material</td>
<td>239</td>
</tr>
<tr>
<td>1.</td>
<td>Handling inversion via diagonalization</td>
<td>239</td>
</tr>
<tr>
<td>2.</td>
<td>Constitutive model for muscle</td>
<td>240</td>
</tr>
<tr>
<td>3.</td>
<td>Guaranteeing positive definiteness of the linear systems in Newton iterations</td>
<td>241</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>245</td>
</tr>
</tbody>
</table>