Contents

Contributor contact details
Woodhead Publishing Series in Energy
Preface

Part I Introduction

1 An introduction to the utilization of membrane technology in the production of clean and renewable power

A. Damle, Techverse, Inc., USA

1.1 Introduction
1.2 Membranes for CO₂ capture and hydrogen production
1.3 Membranes for biofuels production
1.4 Membranes for other aspects of clean and renewable energy production
1.5 Overview of market potential and technical barriers for membranes
1.6 Market potential and technical barriers for membranes for CO₂ capture and hydrogen production
1.7 Market potential and technical barriers for membranes for biofuels production
1.8 Market potential and technical barriers for membranes for other aspects of clean and renewable energy production
1.9 Conclusion and future trends
1.10 References
Contents

2 Combining membrane processes with renewable energy technologies: perspectives on membrane desalination, biofuels and biogas production, and microbial fuel cells
C. Charcosset, University Lyon 1, France

2.1 Introduction
2.2 Desalination using renewable energies
2.3 Membrane processes for biofuel and biogas production
2.4 Membranes for microbial fuel cells
2.5 Conclusion
2.6 References
2.7 Appendix: abbreviations

Part II Membranes for biofuel production and processing

3 Membrane processes for biofuel separation: an introduction
A. Gugliuzza and A. Basile, Institute on Membrane Technology – Italian National Research Council (ITM-CNR), Italy

3.1 Introduction
3.2 Membrane materials and fabrication
3.3 Membrane operations for gas and vapour separation
3.4 Membrane reactors for biofuels treatment
3.5 Applications of high-performance membranes in biofuel separation
3.6 Conclusion
3.7 References
3.8 Appendix: abbreviations and symbols

4 Membranes and membrane reactors for the production of second generation biofuels
V. Piemonte and L. Di Paola, University Campus Bio-medico of Rome, Italy

4.1 Introduction
4.2 Basics of biofuel production
4.3 Biodiesel production using membranes and membrane reactors

© Woodhead Publishing Limited, 2014
4.4 Bioalcohol production 114
4.5 Conclusion 117
4.6 References 117

5 Membrane reactors for biodiesel production 122
S. Curcio and E. Ricca, University of Calabria, Italy

5.1 Introduction 122
5.2 Biocatalyst immobilization 128
5.3 Membrane bioreactors 131
5.4 Conclusion 140
5.5 References 140
5.6 Appendix: abbreviations and symbols 142

Part III Membranes for syngas, hydrogen and oxygen production and processing 143

6 Steam reforming of biofuels for the production of hydrogen-rich gas 145
A. Blasi, G. Fiorenza and C. Freda, ENEA, Italy and V. Calabro, University of Calabria, Italy

6.1 Introduction 145
6.2 Steam reforming for production of hydrogen-rich gas 146
6.3 State-of-the-art of steam reforming of biofuels 153
6.4 Membrane reactors for the production of biofuels and steam reforming 164
6.5 Conclusion 173
6.6 References 173

7 Perovskite membrane reactors: fundamentals and applications for oxygen production, syngas production and hydrogen processing 182
S. Smart, The University of Queensland, Australia, S. Liu, Curtin University, Australia, J. M. Serra, Universidad Politécnica de Valencia, Spain, A. Basile, Institute on Membrane Technology – Italian National Research Council (ITM-CNR), Italy and J. C. Diniz da Costa, The University of Queensland, Australia

7.1 Introduction 182
7.2 Oxygen and hydrogen transport 186

© Woodhead Publishing Limited, 2014
Contents

7.3 Perovskite membrane reactors 189
7.4 Concept and theoretical predictions 203
7.5 Future trends 208
7.6 Conclusions 210
7.7 Acknowledgements 210
7.8 References 210
7.9 Appendix: abbreviations and symbols 217

8 Environmental analysis of hydrogen-methane blends for transportation 218
A. Genovese, ENEA, Italy and C. Villante, Sannio University, Italy

8.1 Introduction 218
8.2 Hydrogen for clean transportation 219
8.3 Hydrogen-methane blends for transportation 223
8.4 Energy analysis 226
8.5 Conclusions 232
8.6 Bibliography 233
8.7 References 234
8.8 Appendix: abbreviations 234

Part IV Membranes for fuel cells 235

9 Ceramic membranes for intermediate temperature solid oxide fuel cells (SOFCs): state of the art and perspectives 237
M. Lo Faro and A. S. Aricò, CNR-ITAE Institute, Italy

9.1 Introduction 237
9.2 Ceramic electrolyte for IT-SOFC 238
9.3 Oxygen ion conductors 240
9.4 Intermediate temperature electrolyte 243
9.5 Proton conductors 246
9.6 Mixed ion conductors for low temperature SOFCs 253
9.7 Ceramic membrane preparation 253
9.8 Conclusions 255
9.9 Acknowledgement 256
9.10 References 256
9.11 Appendix: abbreviations and symbols 263

© Woodhead Publishing Limited, 2014
Contents ix

10 Microbial fuel cells: transformation of wastes into clean energy 266
K. Scott, Newcastle University, UK

10.1 Introduction 266
10.2 The microbial fuel cell (MFC) 269
10.3 Membranes for microbial fuel cells 277
10.4 Ion and mass transfer processes across ion exchange membranes 282
10.5 Applications of membranes and separators in MFCs 286
10.6 Future trends 293
10.7 Conclusion 295
10.8 References 296
10.9 Appendix: abbreviations and symbols 298

11 Direct bioethanol fuel cells 301
V. Cigolotti, ENEA, Italy, H. Devianto, Institut Teknologi Bandung, Indonesia and S. McPhail and A. Moreno, ENEA, Italy

11.1 Introduction 301
11.2 Research into ethanol steam reforming 305
11.3 Research by Devianto et al. on direct bioethanol molten carbonate fuel cells (MCFCs) 309
11.4 Conclusion 317
11.5 References 317

Part V Membranes integrated with solar and wind energy and for water-related applications 323

12 Membrane technologies for solar-hydrogen production 325
A. Giaconia and G. Caputo, ENEA, Italy

12.1 Introduction 325
12.2 Membrane applications in solar-hydrogen production 326
12.3 Solar water electrolysis 330
12.4 Thermochemical water-splitting cycles 333
12.5 Solar membrane steam reforming 339
12.6 Conclusion and future trends 344

© Woodhead Publishing Limited, 2014
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
</tr>
<tr>
<td>12.8</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>13.1</td>
</tr>
<tr>
<td>13.2</td>
</tr>
<tr>
<td>13.3</td>
</tr>
<tr>
<td>13.4</td>
</tr>
<tr>
<td>13.5</td>
</tr>
<tr>
<td>13.6</td>
</tr>
<tr>
<td>13.7</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>14.1</td>
</tr>
<tr>
<td>14.2</td>
</tr>
<tr>
<td>14.3</td>
</tr>
<tr>
<td>14.4</td>
</tr>
<tr>
<td>14.5</td>
</tr>
<tr>
<td>14.6</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15.1</td>
</tr>
<tr>
<td>15.2</td>
</tr>
<tr>
<td>15.3</td>
</tr>
<tr>
<td>15.4</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5 Pressure retarded forward osmosis for direct power generation</td>
<td>391</td>
</tr>
<tr>
<td>15.6 Conclusion</td>
<td>393</td>
</tr>
<tr>
<td>15.7 References</td>
<td>394</td>
</tr>
<tr>
<td>15.8 Appendix: abbreviations and symbols</td>
<td>394</td>
</tr>
</tbody>
</table>

Index | 397 |