DIGITAL MICROWAVE COMMUNICATION

Engineering Point-to-Point Microwave Systems

GEORGE KIZER
CONTENTS

Preface xv
Acknowledgments xvii
About the Author xix

1 A Brief History of Microwave Radio Fixed Point-to-Point (Relay) Communication Systems 1
1.1 In the Beginning, 1
1.2 Microwave Telecommunications Companies, 7
1.3 Practical Applications, 10
1.4 The Beat Goes On, 14
References, 16

2 Regulation of Microwave Radio Transmissions 20
2.1 Radio Frequency Management, 21
2.2 Testing for Interference, 28
2.3 Radio Paths by FCC Frequency Band in the United States, 29
2.4 Influences in Frequency Allocation and Utilization Policy within the Western Hemisphere, 30
2.4.1 United States of America (USA), 30
2.4.2 Canada, 36
2.5 FCC Fixed Radio Services, 36
2.6 Site Data Accuracy Requirements, 41
2.7 FCC Antenna Registration System (ASR) Registration Requirements, 42
2.8 Engineering Microwave Paths Near Airports and Heliports, 44
2.8.1 Airport Guidelines, 46
References, 47

3 Microwave Radio Overview 48
3.1 Introduction, 48
3.2 Digital Signaling, 50
3.3 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 50
3.4 Digital Pulse Amplitude Modulation (PAM), 53
3.5 Radio Transmitters and Receivers, 58
3.6 Modulation Format, 60
3.7 QAM Digital Radios, 65
3.8 Channel Equalization, 68
3.9 Channel Coding, 70
3.10 Trellis Coded Modulation (TCM), 72
3.11 Orthogonal Frequency Division Multiplexing (OFDM), 75
3.12 Radio Configurations, 76
3.12.1 Cross-Polarization Interference Cancellation (XPIC), 78
3.13 Frequency Diversity and Multiline Considerations, 82
3.14 Transmission Latency, 85
3.15 Automatic Transmitter Power Control (ATPC), 87
3.16 Current Trends, 87
3.16.1 TDM (or ATM) over IP, 87
3.16.2 TDM Synchronization over IP, 88
3.16.3 Adaptive Modulation, 89
3.16.4 Quality of Service (QoS) [Grade of Service (GoS) in Europe], 89
References, 90

4 Radio Network Performance Objectives
4.1 Customer Service Objectives, 96
4.2 Maintenance Objectives, 96
4.3 Commissioning Objectives, 98
4.4 Design Objectives, 98
4.4.1 Quality, 98
4.4.2 Availability, 98
4.5 Differences Between North American and European Radio System Objectives, 99
4.5.1 North American Radio Engineering Standards (Historical Bell System Oriented), 99
4.5.2 European Radio Engineering Standards (ITU Oriented), 99
4.6 North American Telecommunications System Design Objectives, 100
4.7 International Telecommunications System Design Objectives, 100
4.7.1 Legacy European Microwave Radio Standards, 102
4.7.2 Modern European Microwave Radio Standards, 102
4.8 Engineering Microwave Paths to Design Objectives, 102
4.9 Accuracy of Path Availability Calculations, 106
4.9.1 Rain Fading, 106
4.9.2 Multipath Fading, 106
4.9.3 Dispersive Fading Outage, 107
4.9.4 Diversity Improvement Factor, 107
4.10 Impact of Flat Multipath Variability, 108
4.11 Impact of Outage Measurement Methodology, 108
4.12 Impact of External Interference, 109
4.13 Conclusion, 109
References, 110

5 Radio System Components
5.1 Microwave Signal Transmission Lines, 115
5.2 Antenna Support Structures, 121
5.2.1 Lattice Towers, 122
5.2.2 Self-Supporting Towers, 122
5.2.3 Guyed Towers, 122
CONTENTS

5.2.4 Monopoles, 124
5.2.5 Architecturally Designed Towers, 125
5.2.6 Building-Mounted Antennas, 126
5.2.7 Camouflaged Structures, 126
5.2.8 Temporary Structures, 126

5.3 Tower Rigidity and Integrity, 127
5.4 Transmission Line Management, 127
5.5 Antennas, 127
5.6 Near Field, 137
5.7 Fundamental Antenna Limitations, 143
5.8 Propagation, 143
5.9 Radio System Performance as a Function of Radio Path Propagation, 145
 5.9.1 Flat Fading, 146
 5.9.2 Dispersive Fading, 148
5.10 Radio System Performance as a Function of Radio Path Terrain, 149
5.11 Antenna Placement, 153
5.12 Frequency Band Characteristics, 155
5.13 Path Distances, 157
5.A Appendix, 159
 5.A.1 Antenna Isotropic Gain and Free Space Loss, 159
 5.A.2 Free Space Loss, 163
 5.A.3 Antenna Isotropic Gain, 164
 5.A.4 Circular (Parabolic) Antennas, 166
 5.A.5 Square (Panel) Antennas, 167
 5.A.6 11-GHz Two-foot Antennas, 168
 5.A.7 Tower Rigidity Requirements, 169

6 Designing and Operating Microwave Systems

6.1 Why Microwave Radio? 175
6.2 Radio System Design, 175
6.3 Designing Low Frequency Radio Networks, 179
6.4 Designing High Frequency Radio Networks, 182
 6.4.1 Hub and Spoke, 183
 6.4.2 Nested Rings, 184
6.5 Field Measurements, 185
6.6 User Data Interfaces, 185
6.7 Operations and Maintenance, 202
 6.7.1 Fault Management, 203
 6.7.2 Alarms and Status, 206
 6.7.3 Performance Management, 207
6.8 Maintaining the Network, 210
 References, 217

7 Hypothetical Reference Circuits

7.1 North American (NA) Availability Objectives, 220
 7.1.1 NA Bell System Hypothetical Reference Circuit-Availability Objectives, 220
 7.1.2 NA Telcordia Hypothetical Reference Circuit-Availability Objectives, 222
7.2 North American Quality Objectives, 225
 7.2.1 Residual BER, 225
 7.2.2 Burst Errored Seconds, 225
 7.2.3 DS1 Errored Seconds, 225
 7.2.4 DS3 Errored Seconds, 225
8 Microwave Antenna Theory

8.1 Common Parameters, 251
8.2 Passive Reflectors, 252
 8.2.1 Passive Reflector Far Field Radiation Pattern, 253
 8.2.2 Passive Reflector Near Field Power Density, 255
8.3 Circular (Parabolic) Antennas, 256
 8.3.1 Circular (Parabolic) Antenna Far Field Radiation Pattern, 256
 8.3.2 Circular (Parabolic) Antenna Efficiency, 260
 8.3.3 Circular (Parabolic) Antenna Beamwidth, 261
 8.3.4 Circular (Parabolic) Antenna Near Field Power Density, 264
 8.3.5 General Near Field Power Density Calculations, 265
 8.3.6 Circular Antenna Near Field Power Density Transitions, 272
 8.3.7 Circular Antenna Far Field Reference Power, 273
8.4 Square Flat Panel Antennas, 274
 8.4.1 Square Antenna Beamwidth, 276
 8.4.2 Square Near Field Power Density, 279
 8.4.3 Square Antenna Far Field Reference Power, 288
 8.4.4 Square Near Field Power Density Transitions, 289
8.5 Regulatory Near Field Power Density Limits, 290
8.6 Practical Near Field Power Calculations, 290
 8.6.1 A Parabolic Antenna Near Field Power Example Calculation, 293
 8.6.2 Safety Limits, 294
8.7 Near Field Antenna Coupling Loss, 296
 8.7.1 Antenna to Antenna Near Field Coupling Loss, 296
 8.7.2 Coupling Loss between Identical Antennas, 300
 8.7.3 Coupling Loss between Different-Sized Circular Antennas, 300
 8.7.4 Coupling Loss between Different-Sized Square Antennas, 301
 8.7.5 Parabolic Antenna to Passive Reflector Near Field Coupling Loss, 302
 8.7.6 Coupling Loss for Circular Antenna and Square Reflector, 303
 8.7.7 Coupling Loss for Square Antenna and Square Reflector (Both Aligned), 305
 8.7.8 Back-to-Back Square Passive Reflector Near Field Coupling Loss, 306
8.A Appendix, 307
 8.A.1 Circular Antenna Numerical Power Calculations, 307
 8.A.2 Square Antenna Numerical Power Calculations, 311
 8.A.3 Bessel Functions, 315
References, 318

9 Multipath Fading

9.1 Flat and Dispersive Fading, 329
9.A Appendix, 338
 9.A.1 Fading Statistics, 338
 9.A.2 DFM Equation Derivation, 339
 9.A.3 Characteristics of Receiver Signature Curves and DFM, 342
References, 344
10 Microwave Radio Diversity

10.1 Space Diversity, 350
10.2 Dual-Frequency Diversity, 354
10.3 Quad (Space and Frequency) Diversity, 357
10.4 Hybrid Diversity, 358
10.5 Multiline Frequency Diversity, 358
10.6 Crossband Multiline, 365
10.7 Angle Diversity, 366
 10.7.1 Angle Diversity Configurations, 368
 10.7.2 Angle Diversity Performance, 371
10.A Appendix, 372
 10.A.1 Optimizing Space Diversity Vertical Spacing, 372
 10.A.2 Additional Optimization, 377
References, 380

11 Rain Fading

11.1 Point (Single-Location) Rain Loss (Fade) Estimation, 386
11.2 Path Rain-Fade Estimation, 390
11.3 Point-to-Path Length Conversion Factor, 398
11.4 Single-Location Rain Rate R, 398
11.5 City Rain Rate Data for North America, 407
11.6 New Rain Zones, 430
11.7 Worst-Month Rain Rates, 430
11.8 Point Rain Rate Variability, 439
11.9 Examples of Rain-Loss-Dominated Path Designs, 441
11.10 Conclusions, 444
11.A Appendix, 446
 11.A.1 North American City Rain Data Index, 446
References, 458

12 Ducting and Obstruction Fading

12.1 Introduction, 461
 12.1.1 Power Fading, 463
12.2 Superrefraction (Ducting), 465
12.3 Subrefraction (Earth Bulge or Obstruction), 469
12.4 Minimizing Obstruction Fading, 471
 12.4.1 Path Clearance (Antenna Vertical Placement) Criteria, 471
12.5 Obstruction Fading Model, 477
12.6 Obstruction Fading Estimation, 479
12.7 Bell Labs Seasonal Parameter Charts, 483
12.8 Refractivity Data Limitations, 484
12.9 Reviewing the Bell Labs Seasonal Parameter Charts, 485
12.10 Obstruction Fading Parameter Estimation, 486
12.11 Evaluating Path Clearance Criteria, 487
12.A Appendix: North American Refractivity Index Charts, 490
12.B Appendix: Worldwide Obstruction Fading Data, 491
References, 511

13 Reflections and Obstructions

13.1 Theoretical Rough Earth Reflection Coefficient, 514
 13.1.1 Gaussian Model, 516
 13.1.2 Uniform Model, 517

References, 519
13.2 Scattering from Earth Terrain, 517
13.3 Practical Earth Reflection Coefficient, 519
13.4 Reflection Location, 519
13.5 Smooth Earth Divergence Factor, 522
13.6 Reflections from Objects Near a Path, 523
13.7 Fresnel Zones, 525
13.8 Antenna Launch Angle (Transmit or Receive Antenna Takeoff Angle), 527
13.9 Grazing Angle, 527
13.10 Additional Path Distance, 528
13.11 Estimating the Effect of a Signal Reflected from the Earth, 528
13.12 Flat Earth Obstruction Path Loss, 529
13.13 Smooth Earth Obstruction Loss, 529
13.14 Knife-Edge Obstruction Path Gain, 530
13.15 Rounded-Edge Obstruction Path Gain, 531
13.16 Complex Terrain Obstruction Losses, 532
13.A Appendix, 536
13.A.1 Smooth Earth Reflection Coefficient, 536
13.A.2 Procedure for Calculating \(R_H \) AND \(R_V \), 536
13.A.3 Earth Parameters for Frequencies Between 100 kHz and 1 GHz, 538
13.A.4 Earth Parameters for Frequencies Between 1 GHz and 100 GHz, 540
13.A.5 Comments on Conductivity and Permittivity, 541
13.A.6 Reflection Coefficients, 541
References, 555

14 Digital Receiver Interference 559
14.1 Composite Interference (\(\Delta T/T \)) Criterion, 559
14.2 Carrier-to-Interference Ratio (\(C/I \)) Criterion, 560
14.3 Measuring \(C/I \), 560
14.4 Estimating \(C/I \), 561
14.5 Threshold to Interference (\(T/I \)) Criterion, 562
14.6 Why Estimate \(T/I \), 563
14.7 \(T/I \) Estimation—Method One, 564
14.8 \(T/I \) Estimation—Method Two, 565
14.9 Conclusion, 569
14.A Appendix, 569
14.A.1 Basic \(10^{-6} \) Threshold for Gaussian (Radio Front End) Noise Only, 569
14.A.2 Using a Spectrum Mask as a Default Spectrum Curve, 570
14.B Appendix: Receiver Parameters, 571
References, 572

15 Network Reliability Calculations 573
15.1 Hardware Reliability, 574
15.2 System Reliability, 577
15.2.1 Equipment in Series, 577
15.2.2 Multiple Equipment in Parallel, 578
15.2.3 Nested Equipment, 579
15.2.4 Meshed Duplex Configuration, 579
15.3 Communication Systems, 579
15.4 Application to Radio Configurations, 580
15.5 Spare Unit Requirements, 580
15.6 BER Estimation, 583
15.6.1 Time to Transmit \(N \) Digits, 585
References, 585
16 Path Performance Calculations

16.1 Path Loss, 588
16.2 Fade Margin, 589
16.3 Path Performance, 589
16.4 Allowance for Interference, 590
16.5 North American (NA) Path Performance Calculations, 590
 16.5.1 Vigants-Barnett Multipath Fading (Barnett, 1972; Vigants, 1975)—NA, 591
 16.5.2 Cross-Polarization Discrimination Degradation Outages—NA, 596
 16.5.3 Space Diversity: Flat-Fading Improvement—NA, 596
 16.5.4 Space Diversity: Dispersive-Fading Improvement—NA, 599
 16.5.5 Dual Frequency Diversity: Flat-Fading Improvement—NA, 599
 16.5.6 Dual Frequency Diversity: Dispersive-Fading Improvement—NA, 600
 16.5.7 Quad (Space and Frequency) Diversity—NA, 601
 16.5.8 Hybrid Diversity—NA, 601
 16.5.9 Multiline Frequency Diversity—NA, 601
 16.5.10 Angle Diversity—NA, 602
 16.5.11 Upfading—NA, 603
 16.5.12 Shallow Flat Fading—NA, 603
16.6 International Telecommunication Union—Radiocommunication Sector (ITU-R) Path Performance Calculations, 604
 16.6.1 Flat Fading—ITU-R, 605
 16.6.2 Dispersive Fading—ITU-R, 606
 16.6.3 Cross-Polarization Discrimination Degradation Outages—ITU-R, 608
 16.6.4 Upfading—ITU-R, 609
 16.6.5 Shallow Flat Fading—ITU-R, 609
 16.6.6 Space Diversity Improvement—ITU-R, 610
 16.6.7 Dual-Frequency Diversity Improvement—ITU-R, 611
 16.6.8 Quad (Space and Frequency) Diversity—ITU-R, 611
 16.6.9 Angle Diversity Improvement—ITU-R, 613
 16.6.10 Other Diversity Improvements—ITU-R, 614
16.7 Rain Fading and Obstruction Fading (NA and ITU-R), 614
16.8 Comparing the North American and the ITU-R Flat-Fading Estimates, 614
 16.8.1 Vigants-Barnett Flat-Fading Estimation for Bell Labs Path, 614
 16.8.2 ITU-R Flat-Fading Estimation for Bell Labs Path, 615
16.9 Diffraction and Vegetation Attenuation, 621
16.10 Fog Attenuation, 622
16.11 Air Attenuation, 624
16.A Appendix, 631
 References, 649

A Microwave Formulas and Tables

A.1 General, 653
 Table A.1 General, 653
 Table A.2 Scientific and Engineering Notation, 654
 Table A.3 Emission Designator, 655
 Table A.4 Typical Commercial Parabolic Antenna Gain (dBi), 656
 Table A.5 Typical Rectangular Waveguide, 656
 Table A.6 Typical Rectangular Waveguide Data, 657
 Table A.7 Typical Copper Corrugated Elliptical Waveguide Loss, 657
 Table A.8 Typical Copper Circular Waveguide Loss, 658
 Table A.9 Rectangular Waveguide Attenuation Factors, 659
 Table A.10 CommScope Elliptical Waveguide Attenuation Factors, 659
 Table A.11 RFS Elliptical Waveguide Attenuation Factors, 660
Table A.12 Elliptical Waveguide Cutoff Frequencies, 660
Table A.13 Circular Waveguide Cutoff Frequencies, 661
Table A.14 Typical Coaxial Microwave Connectors, 663
Table A.15 Coaxial Cable Velocity Factors, 664
Table A.16 50 Ohm Coaxial Cable Attenuation Factors, 664
Table A.17 Frequency Bands, General Users, 665
Table A.18 Frequency Bands, Fixed Point to Point Operators, 665
Table A.19 Frequency Bands, Radar, Space and Satellite Operators, 666
Table A.20 Frequency Bands, Electronic Warfare Operators, 666
Table A.21 Frequency Bands, Great Britain Operators, 666
Table A.22 Signal-to-Noise Ratio for Demodulator 10⁻⁶ BER, 667

A.2 Radio Transmission, 668
A.2.1 Unit Conversions, 668
A.2.2 Free Space Propagation Absolute Delay, 669
A.2.3 Waveguide Propagation Absolute Delay, 669
A.2.4 Coaxial Cable Propagation Absolute Delay, 669
A.2.5 Free Space Propagation Wavelength, 669
A.2.6 Dielectric Medium Propagation Wavelength, 669
A.2.7 Free Space Loss (dB), 670
A.2.8 Effective Radiated Power (ERP) and Effective Isotropic Radiated Power (EIRP), 670
A.2.9 Voltage Reflection Coefficient, 670
A.2.10 Voltage Standing Wave Ratio Maximum, 670
A.2.11 Voltage Standing Wave Ratio Minimum, 670
A.2.12 Voltage Standing Wave Ratio, 670
A.2.13 Power Reflection Coefficient, 671
A.2.14 Reflection Loss, 671
A.2.15 Return Loss, 671
A.2.16 Q (Quality) Factor (Figure of Merit for Resonant Circuits or Cavities), 671
A.2.17 Q (Quality) Factor (Figure of Merit for Optical Receivers), 672
A.2.18 Typical Long-Term Interference Objectives, 672
A.2.19 Frequency Planning Carrier-to-Interference Ratio (C/I), 672
A.2.20 Noise Figure, Noise Factor, Noise Temperature, and Front End Noise, 672
A.2.21 Shannon’s Formula for Theoretical Limit to Transmission Channel Capacity, 674

A.3 Antennas (Far Field), 675
A.3.1 General Microwave Aperture Antenna (Far Field) Gain (dBi), 675
A.3.2 General Microwave Antenna (Far Field) Relative Gain (dBi), 675
A.3.3 Parabolic (Circular) Microwave Antenna (Far Field) Gain (dBi), 675
A.3.4 Parabolic (Circular) Microwave Antenna Illumination Efficiency, 676
A.3.5 Panel (Square) Microwave Antenna (Far Field) Gain (dBi), 676
A.3.6 Panel (Square) Microwave Antenna Illumination Efficiency, 676
A.3.7 Angle Between Incoming and Outgoing Radio Signal Paths, C, for a Passive Reflector, 677
A.3.8 Signal Polarization Rotation Through a Passive Reflector, Δφ, 678
A.3.9 Signal Effects of Polarization Rotation, 678
A.3.10 Passive Reflector (Far Field) Two-Way (Reception and Retransmission) Gain (dBi), 678
A.3.11 Rectangular Passive Reflector 3-dB Beamwidth (Degrees, in Horizontal Plane), 678
A.3.12 Elliptical Passive Reflector 3-dB Beamwidth (Degrees), 679
A.3.13 Circular Parabolic Antenna 3-dB Beamwidth (Degrees), 679
A.3.14 Passive Reflector Far Field Radiation Pattern Envelopes, 680
A.3.15 Inner Radius for the Antenna Far-Field Region, 681
A.4 Near-Field Power Density, 682
 A.4.1 Circular Antennas, 682
 A.4.2 Square Antennas, 682
A.5 Antennas (Close Coupled), 683
 A.5.1 Coupling Loss L_{NF} (dB) Between Two Antennas in the Near Field, 683
 A.5.2 Coupling Loss L_{NF} (dB) Between Identical Antennas, 683
 A.5.3 Coupling Loss L_{NF} (dB) Between Different-Sized Circular Antennas, 684
 A.5.4 Coupling Loss L_{NF} (dB) Between Different-Sized Square Antennas (Both Antennas Aligned), 684
 A.5.5 Coupling Loss L_{NF} (dB) for Antenna and Square Reflector in the Near Field, 685
 A.5.6 Coupling Loss L_{NF} (dB) for Circular Antenna and Square Reflector, 685
 A.5.7 Coupling Loss L_{NF} (dB) for Square Antenna and Square Reflector (Both Aligned), 686
 A.5.8 Two Back-to-Back Square Reflectors Combined Gain, 687
A.6 Path Geometry, 687
 A.6.1 Horizons (Normal Refractivity over Spherical Earth), 687
 A.6.2 Earth Curvature (Height Adjustment Used on Path Profiles), 688
 A.6.3 Reflection Point, 688
 A.6.4 Fresnel Zone Radius (Perpendicular to the Radio Path), 690
 A.6.5 Fresnel Zone Projected onto the Earth’s Surface, 690
 A.6.6 Reflection Path Additional Distance, 691
 A.6.7 Reflection Path Additional Delay, 691
 A.6.8 Reflection Path Relative Amplitude, 691
 A.6.9 Antenna Launch Angle, 691
 A.6.10 Antenna Height Difference, 692
 A.6.11 K Factor (From Launch Angles), 692
 A.6.12 Refractive Index and K Factor (From Atmospheric Values), 693
A.7 Obstruction Loss, 693
 A.7.1 Knife-Edge Obstruction Loss, 693
 A.7.2 Rounded-Edge Obstruction Path Loss, 694
 A.7.3 Smooth-Earth Obstruction Loss, 695
 A.7.4 Infinite Flat Reflective Plane Obstruction Loss, 695
 A.7.5 Reflection (Earth Roughness Scattering) Coefficient, 695
 A.7.6 Divergence Coefficient from Earth, 696
 A.7.7 Divergence Factor for a Cylinder, 697
 A.7.8 Divergence Factor for a Sphere, 697
 A.7.9 Signal Reflected from Flat Earth, 697
 A.7.10 Ducting, 697
A.8 Mapping, 698
 A.8.1 Path Length and Bearing, 698
A.9 Towers, 700
 A.9.1 Three-Point Guyed Towers, 700
 A.9.2 Three-Leg Self-Supporting Tower, 701
 A.9.3 Four-Leg Self-Supporting Tower, 701
A.10 Interpolation, 702
 A.10.1 Two-Dimensional Interpolation, 702
 A.10.2 Three-Dimensional Interpolation, 705
B Personnel and Equipment Safety Considerations 709
 B.1 General Safety Guidelines, 709
 B.2 Equipment Protection, 711
 B.3 Equipment Considerations, 712
 B.4 Personnel Protective Equipment, 713
B.5 Accident Prevention Signs, 713
B.6 Tower Climbing, 713
B.7 Hand Tools, 715
B.8 Electrical Powered Tools, 715
B.9 Soldering Irons, 715
B.10 Ladders, 716
B.11 Hoisting or Moving Equipment, 716
B.12 Batteries, 717
B.13 Laser Safety Guidelines, 717
B.14 Safe Use of Lasers and LED in Optical Fiber Communication Systems, 718
B.15 Optical Fiber Communication System (OFCS) Service Groups (SGs), 718
B.16 Electrostatic Discharge (ESD), 719
B.17 Maximum Permissible Microwave Radio RF Exposure, 720
B.18 Protect Other Radio Users [FCC], 720
B.19 PAUSE (Prevent all Unplanned Service Events) and Ask Yourself (Verizon and AT&T Operations), 721
B.20 Protect Yourself (Bell System Operations), 721
B.21 Parting Comment, 721

Index 723