The Water Waves Problem
Mathematical Analysis and Asymptotics

David Lannes
Contents

Preface xiii

Index of notations xvii
 General notations xvii
 Matrices and vectors xvii
 Variables and standard operators xvii
 Parameter depending quantities xviii
 Functional spaces xix
 Functional spaces on \(\mathbb{R}^d \) xix
 Functional spaces on a domain \(\Omega \subset \mathbb{R}^{d+1} \) xix

Chapter 1. The Water Waves Problem and Its Asymptotic Regimes 1
 1.1. Mathematical formulation 1
 1.1.1. Basic assumptions 1
 1.1.2. The free surface Euler equations 2
 1.1.3. The free surface Bernoulli equations 3
 1.1.4. The Zakharov/Craig-Sulem formulation 4
 1.2. Other formulations of the water waves problem 5
 1.2.1. Lagrangian parametrizations of the free surface 5
 1.2.1.1. Nalimov’s formulation in dimension \(d = 1 \) 6
 1.2.2. Other interface parametrizations and extension to two-fluids interfaces 8
 1.2.3. Variational formulations 10
 1.2.3.1. The geometric approach 11
 1.2.3.2. Luke’s variational formulation 12
 1.2.4. Free surface Euler equations in Lagrangian formulation 12
 1.3. The nondimensionalized equations 13
 1.3.1. Dimensionless parameters 13
 1.3.2. Linear wave theory 14
 1.3.3. Nondimensionalization of the variables and unknowns 16
 1.3.4. Nondimensionalization of the equations 18
 1.4. Plane waves, waves packets, and modulation equations 20
 1.5. Asymptotic regimes 23
 1.6. Extension to moving bottoms 25
 1.7. Extension to rough bottoms 27
 1.7.1. Nonsmooth topographies 27
 1.7.2. Rapidly varying topographies 29
 1.8. Supplementary remarks 30
 1.8.1. Discussion on the basic assumptions 30
1.8.2. Related frameworks

Chapter 2. The Laplace Equation
- 2.1. The Laplace equation in the fluid domain
 - 2.1.1. The equation
 - 2.1.2. Functional setting and variational solutions
 - 2.1.3. Existence and uniqueness of a variational solution
- 2.2. The transformed Laplace equation
 - 2.2.1. Notations and new functional spaces
 - 2.2.2. Choice of a diffeomorphism
 - 2.2.3. Transformed equation
 - 2.2.4. Variational solutions for data in $\dot{H}^{1/2}(\mathbb{R}^d)$
- 2.3. Regularity estimates
- 2.4. Strong solutions to the Laplace equation
- 2.5. Supplementary remarks
 - 2.5.1. Choice of the diffeomorphism
 - 2.5.2. Nonasymptotically flat bottom and surface parametrizations
 - 2.5.3. Rough bottoms
 - 2.5.4. Infinite depth
 - 2.5.5. Nonhomogeneous Neumann conditions at the bottom
 - 2.5.6. Analyticity

Chapter 3. The Dirichlet-Neumann Operator
- 3.1. Definition and basic properties
 - 3.1.1. Definition
 - 3.1.2. Basic properties
- 3.2. Higher order estimates
- 3.3. Shape derivatives
- 3.4. Commutator estimates
- 3.5. The Dirichlet-Neumann operator and the vertically averaged velocity
- 3.6. Asymptotic expansions
 - 3.6.1. Asymptotic expansion in shallow-water ($\mu \ll 1$)
 - 3.6.2. Asymptotic expansion for small amplitude waves ($\varepsilon \ll 1$)
- 3.7. Supplementary remarks
 - 3.7.1. Nonasymptotically flat bottom and surface parametrizations
 - 3.7.2. Rough bottoms
 - 3.7.3. Infinite depth
 - 3.7.4. Small amplitude expansions for nonflat bottoms
 - 3.7.5. Self-adjointness
 - 3.7.6. Invertibility
 - 3.7.7. Symbolic analysis
 - 3.7.8. The Neumann-Neumann, Dirichlet-Dirichlet, and Neumann-Dirichlet operators

Chapter 4. Well-posedness of the Water Waves Equations
- 4.1. Linearization around the rest state and energy norm
- 4.2. Quasilinearization of the water waves equations
 - 4.2.1. Notations and preliminary results
 - 4.2.2. A linearization formula
4.2.3. The quasilinear system 97
4.3. Main results 101
4.3.1. Initial condition 101
4.3.2. Statement of the theorems 102
4.3.3. Asymptotic regimes 103
4.3.4. Proof of Theorems 4.16 and 4.18 104
4.3.4.1. The mollified quasilinear system 104
4.3.4.2. Symmetrizer and energy 105
4.3.4.3. Energy estimates 106
4.3.4.4. Construction of a solution 109
4.3.4.5. Uniqueness and stability 112
4.3.5. The Rayleigh-Taylor criterion 112
4.3.5.1. Reformulation of the equations 113
4.3.5.2. Comments on the Rayleigh-Taylor criterion (4.56) 113
4.4. Supplementary remarks 115
4.4.1. Nonasymptotically flat bottom and surface parametrizations 115
4.4.2. Rough bottoms 117
4.4.3. Very deep water \((\mu \gg 1)\) and infinite depth 118
4.4.4. Global well-posedness 119
4.4.5. Low regularity 120

5.1. Derivation of shallow water models \((\mu \ll 1)\) 122
5.1.1. Large amplitude models \((\mu \ll 1\) and \(\epsilon = O(1), \beta = O(1))\) 123
5.1.1.1. The Nonlinear Shallow Water (NSW) equations 123
5.1.1.2. The Green-Naghdi (GN) equations 125
5.1.2. Medium amplitude models \((\mu \ll 1\) and \(\epsilon = O(\sqrt{\mu})\)) 128
5.1.2.1. Large amplitude topography variations: \(\beta = O(1)\) 128
5.1.2.2. Medium amplitude topography variations: \(\beta = O(\sqrt{\mu})\) 128
5.1.2.3. Small amplitude topography variations: \(\beta = O(\mu)\) 128
5.1.3. Small amplitude models \((\mu \ll 1\) and \(\epsilon = O(\mu))\) 129
5.1.3.1. Large amplitude topography variations: \(\beta = O(1)\) 129
5.1.3.2. Small amplitude topography variations: \(\beta = O(\mu)\) 129
5.2. Improving the frequency dispersion of shallow water models 131
5.2.1. Boussinesq equations with improved frequency dispersion 132
5.2.1.1. A first family of Boussinesq-Peregrine systems with improved frequency dispersion 132
5.2.1.2. A second family of Boussinesq-Peregrine systems with improved frequency dispersion 134
5.2.1.3. Simplifications for the case of flat or almost flat bottoms 137
5.2.2. Green-Naghdi equations with improved frequency dispersion 139
5.2.2.1. A first family of Green-Naghdi equations with improved frequency dispersion 139
5.2.2.2. A second family of Green-Naghdi equations with improved frequency dispersion 140
5.2.3. The physical relevance of improving the frequency dispersion 140
5.3. Improving the mathematical properties of shallow water models 141
5.4. Moving bottoms 143
5.4.1. The Nonlinear Shallow Water equations with moving bottom 144
5.4.2. The Green-Naghdi equations with moving bottom 145
5.4.3. A Boussinesq system with moving bottom. 145
5.5. Reconstruction of the surface elevation from pressure measurements 146
5.5.1. Hydrostatic reconstruction 147
5.5.2. Nonhydrostatic, weakly nonlinear reconstruction 148
5.6. Supplementary remarks 149
5.6.1. Technical results 149
5.6.1.1. Invertibility properties of $h_b(I + \mu T_b)$ 149
5.6.1.2. Invertibility properties of $h(I + \mu T)$ 151
5.6.2. Remarks on the “velocity” unknown used in asymptotic models 151
5.6.2.1. Relationship between the averaged velocity \overline{V} and the velocity at an arbitrary elevation 151
5.6.2.2. Relationship between $V_{\theta,\delta}$ and the velocity at an arbitrary elevation 153
5.6.3. Formulation in $(h, h\overline{V})$ variables of shallow water models 153
5.6.3.1. The Nonlinear Shallow Water equations 153
5.6.3.2. The Green-Naghdi equations 154
5.6.4. Equations with dimensions 154
5.6.5. The lake and great lake equations 154
5.6.5.1. The lake equations 154
5.6.5.2. The great lake equations 155
5.6.6. Bottom friction 156

6.1. Mathematical analysis of some shallow water models 157
6.1.1. The Nonlinear Shallow Water equations 157
6.1.2. The Green-Naghdi equations 161
6.1.3. The Fully Symmetric Boussinesq systems 164
6.2. Full justification (convergence) of shallow water models 165
6.2.1. Full justification of the Nonlinear Shallow Water equations 165
6.2.2. Full justification of the Green-Naghdi equations 167
6.2.3. Full justification of the Fully Symmetric Boussinesq equations 168
6.2.4. (Almost) full justification of other shallow water systems 169
6.3. Supplementary remarks 172
6.3.1. Energy conservation 172
6.3.1.1. Nonlinear Shallow Water equations 172
6.3.1.2. Boussinesq systems 172
6.3.1.3. Green-Naghdi equations 173
6.3.2. Hamiltonian structure 174

Chapter 7. Shallow Water Asymptotics: Scalar Equations 177
7.1. The splitting into unidirectional waves in one dimension 178
7.1.1. The Korteweg-de Vries equation 178
7.1.2. Statement of the main result 179
7.1.3. BKW expansion 181
7.1.4. Consistency of the approximate solution and secular growth 182
7.1.5. Proof of Theorem 7.1 and Corollary 7.2 185
7.1.6. An improvement 186
7.2. The splitting into unidirectional waves: The weakly transverse case 188
7.2.1. Statement of the main result 190
7.2.2. BKW expansion 191
7.2.3. Consistency of the approximate solution and secular growth 193
7.2.4. Proof of Theorem 7.16 196
7.3. A direct study of unidirectional waves in one dimension 196
7.3.1. The Camassa-Holm regime 197
7.3.1.1. Approximations based on the velocity 197
7.3.1.2. Equations on the surface elevation 199
7.3.1.3. Proof of Theorem 7.24 200
7.3.1.4. The Camassa-Holm and Degasperis-Procesi equations 202
7.3.2. The long-wave regime and the KdV and BBM equations 204
7.3.3. The fully nonlinear regime 205
7.4. Supplementary remarks 206
7.4.1. Historical remarks on the KDV equation 206
7.4.2. Large time well-posedness of (7.47) and (7.51) 208
7.4.3. The case of nonflat bottoms 211
7.4.3.1. Generalization of the KdV equation for nonflat bottoms 211
7.4.3.2. Generalization of the CH/DP equations for nonflat bottoms 211
7.4.4. Wave breaking 212
7.4.5. Full dispersion versions of the scalar shallow water approximations 213
7.4.5.1. One dimensional models 213
7.4.5.2. The weakly transverse case 214

Chapter 8. Deep Water Models and Modulation Equations 217
8.1. A deep water (or full-dispersion) model 218
8.1.1. Derivation 219
8.1.2. Consistency of the deep water (or full-dispersion) model 219
8.1.3. Almost full justification of the asymptotics 222
8.1.4. The case of infinite depth 223
8.2. Modulation equations in finite depth 223
8.2.1. Defining the ansatz 224
8.2.2. Small amplitude expansion of (8.11) 225
8.2.3. Determination of the ansatz 228
8.2.4. The “full-dispersion” Benney-Roskes model 231
8.2.5. The “standard” Benney-Roskes model 232
8.2.6. The Davey-Stewartson model (dimension d = 2) 234
8.2.7. The nonlinear Schrödinger equation (dimension d = 1) 237
8.3. Modulation equations in infinite depth 238
8.3.1. The ansatz 239
8.3.2. The nonlinear Schrödinger equation (dimension d = 1 or 2) 239
8.4. Justification of the modulation equations 240
8.5. Supplementary remarks 241
8.5.1. Benjamin-Feir instability of periodic wave-trains 241
8.5.2. Full-dispersion Davey-Stewartson and Schrödinger equations 243
8.5.3. The nonlinear Schrödinger approximation with improved dispersion 244
8.5.4. Higher order approximation: The Dysthe equation 246
8.5.5. The NLS approximation in the neighborhood of |K|H_0 = 1.363 247
Chapter 9. Water Waves with Surface Tension

9.1. Well-posedness of the water waves equations with surface tension
9.1.1. The equations
9.1.2. Physical relevance
9.1.3. Linearization around the rest state and energy norm
9.1.4. A linearization formula
9.1.5. The quasilinear system
9.1.6. Initial condition
9.1.7. Well-posedness of the water waves equations with surface tension
9.2. Shallow water models (systems) with surface tension
9.2.1. Large amplitude models
9.2.2. Small amplitude models
9.3. Asymptotic models: Scalar equations
9.3.1. Capillary effects and the KdV approximation
9.3.2. The Kawahara approximation
9.3.3. Capillary effects and the KP approximation
9.3.4. The weakly transverse Kawahara approximation
9.4. Asymptotic models: Deep and infinite water
9.5. Modulation equations

Appendix A. More on the Dirichlet-Neumann Operator
A.1. Shape analyticity of the Dirichlet-Neumann operator
A.1.1. Shape analyticity of the velocity potential
A.1.2. Shape analyticity of the Dirichlet-Neumann operator
A.1.2.1. The case of finite depth
A.1.2.2. The case of infinite depth
A.2. Self-Adjointness of the Dirichlet-Neumann operator
A.3. Invertibility of the Dirichlet-Neumann operator
A.5. Related operators
A.5.1. The Laplace equation with nonhomogeneous Neumann condition at the bottom
A.5.2. The Neumann-Neumann, Dirichlet-Dirichlet, and Neumann-Dirichlet operators
A.5.3. A generalized shape derivative formula
A.5.4. Asymptotic expansion of the Neumann-Neumann operator
A.5.5. Asymptotic expansion of the averaged velocity

Appendix B. Product and Commutator Estimates
B.1. Product estimates
B.1.1. Product estimates for functions defined on \(\mathbb{R}^d \)
B.1.2. Product estimates for functions defined on the flat strip \(S \)
B.2. Commutator estimates
B.2.1. Commutator estimates for functions defined in \(\mathbb{R}^d \)
B.2.2. Commutator estimates for functions defined on \(S \)
B.3. Product and commutator with \(C^k \) functions
B.4. Product and commutator in uniformly local Sobolev spaces 293
B.4.1. Uniformly local Sobolev spaces 293
B.4.2. Product estimates 294
B.4.3. Commutator estimates 295

Appendix C. Asymptotic Models: A Reader's Digest 297
C.1. What is a fully justified asymptotic model? 297
C.2. Shallow water models 298
C.2.1. Low precision models 298
C.2.2. High precision models 298
C.2.3. Approximation by scalar equations 299
C.3. Deep water and infinite depth models 300
C.4. Modulation equations 300
C.4.1. Modulation equations in finite depth 300
C.4.2. Modulation equations in infinite depth 302
C.5. Influence of surface tension 302
C.5.1. On shallow water models 302
C.5.2. On deep water models and modulation equations 303

Bibliography 305

Index 319