ADVANCES IN CRYOGENIC ENGINEERING

Transactions of the
Cryogenic Engineering Conference—CEC

Spokane, Washington, USA 13 – 17 June 2011

VOLUME 57A

EDITORS

J.G. Weisend II, Chief Technical Editor
John Barclay
Susan Breon
Jonathan Demko
Michael DiPirro
Peter Kittel
Arkadiy Klebaner
Jennifer Marquardt
Gregory Nellis
Thomas Peterson
John Pfotenhauer
Andrew Rowe
Steven Van Sciver
Sidney Yuan
Mark Zagarola
Al Zeller

All papers have been peer reviewed.

SPONSORING ORGANIZATIONS

ATI Wah Chang
Burkert Fluid Control Systems
Cryocomp
Cryofab, Inc.
Cryomagnetics, Inc.
Eden Cryogenics
GE Global Research
Linde
Luvata Waterbury, Inc.
Meyer Tool & Manufacturing, Inc.
PHPK Technologies
RUAG Space GmbH

SUPPORTERS

Fermi National Accelerator Laboratory

Melville, New York, 2012
AIP I CONFERENCE PROCEEDINGS ■ 1434
Table of Contents

PART A

Preface: Advances in Cryogenic Engineering (Chief Technical Editor: J. G. Weisend)
Al Zeller and Kenneth Marken

CEC Awards
In Memoriam

2011 Cryogenic Engineering Conference Board
CEC Technical Editors

Acknowledgments

100 YEARS OF SUPERCONDUCTING MATERIALS, MACHINES, AND CRYOGENICS

Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
Venkatarao Ganni and James Fesmire

THERMAL INSULATION SYSTEMS—I

Improving MRI magnet thermal performance using variable density multilayer insulation
Jalal Zia, William Rutherford, and William Einziger

Thermal performance of low layer density multilayer insulation using liquid nitrogen
Wesley Johnson and James Fesmire
Dependence of multi-layer insulation thermal performance on interstitial gas pressure
Jeffrey Robert Feller and Wesley Johnson 47

Vibration considerations for cryogenic tanks using glass bubbles insulation
Rudy John Werlink, James Fesmire, and Jared P. Sass 55

LARGE SCALE SYSTEMS—I

Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)
F. Haug and The LHeC Study Team 69

Cryogenic requirements for the JT-60SA Tokamak
Frederic Michel, D. Hitz, Christine Hoa, Valerie Lamaison, Koji Kamiya, Pascal Roussel, Manfred Wanner, and Kiyoshi Yoshida 78

First operational experience and performance optimization of the ATLAS magnet cryogenic system
Nicolas Delruelle, Klaus Barth, Alexey Dudarev, Giorgio Passardi, and Herman ten Kate 86

Conceptual design of the FRIB cryogenic system
J. G. Weisend II, Dana Arenius, Brad Bull, Chris Burns, Adam Fila, Patrick Kelley, Helmut Laumer, Thomas Mann, Allyn McCartney, S. Jones, and Al Zeller 94

Ras Laffan helium recovery unit 2
Eric Arnaud Fauve, Veronique Grabié, David Grillot, Franck Delcayre, and Cindy Deschildre 102

The cryogenic system for NEUROSPIN laboratory: Main features and Refrigerator commissioning
Simon Crispel, Philippe Bredy, Florence Gratiot, David Grillot, H. Lannou, Christophe Mantileri, Gilles Flavien, Cindy Deschildre, and Thierry Roussel 110
AEROSPACE CRYOCOOLERS

Future trends of AFRL cryocooler research
Erin Pettyjohn

Modified methodology for technology trending: Case study of cryocooler efficiency
Darryl Webb, Elaine Lim, Jeff Cha, and Sidney W. Yuan

On-Orbit performance of the TES pulse tube cryocooler system and the instrument - six years in space
Jose Israel Rodriguez and Arthur Na-Nakornpanom

Qualification test results for the TIRS cryocooler
Eric Marquardt, Wilfred Gully, Jennifer Marquardt, Robert Boyle, and Taylor Hale

Test results for a high capacity cryocooler with internal thermal storage
Ted Bertele, Dave Glaister, Wilfred Gully, Paul Hendershott, Robert Levenduski, Eric Marquardt, and Colin Wilson

Very high capacity aerospace cryocooler
Jeffrey Olson, Patrick Champagne, Eric Roth, and Ted Nast

PULSE TUBE CRYOCOOLERS—I

Cryocoolers for aircraft superconducting generators and motors
Ray Radebaugh

Co-Axial pulse tube for oxygen liquification
Nick Emery, Alan Caughley, Neil Glasson, and J. Meier

Study of low vibration 4 K pulse tube cryocoolers
Mingyao Xu, Kyosuke Nakano, Motokazu Saito, Hirokazu Takayama, Akihiro Tsuchiya, and Hiroki Maruyama

Study on G-M type pulse tube cryocooler with a novel active gas distribution system
L. M. Qiu, C. Wang, Zhihua Gan, and W.Q. Dong
Preliminary results of a single stage stirling-type pulse tube cooler for multi-hundred watt cooling power at 80 K
Lihong Yu, Wei Dai, Xiaotao Wang, Jianying Hu, and Ercang Luo 206

A novel Stirling type pulse tube cryocooler suppressing the third type of dc gas flow
Chao Gu, Hai Jin, Y. Zhou, Wenxiu Zhu, and Junjie Wang 214

HELIUM II PROPERTIES AND SYSTEMS

Modeling and development of a superfluid magnetic pump with no moving parts
Amir Eshraghniaye Jahromi, Franklin Miller, and Gregory Nellis 223

Steady-State heat transfer through micro-channels in pressurized He II
Pier Paolo Granieri, Bertrand Baudouy, Aurelian Four, F. Lentijo, Alessandro Mapelli, P. Petagna, and Davide Tommasini 231

Hydraulic characteristics and thermal counterflow in helium II forced flow through orifice plates
Hyung Jin Kim and Steven Van Sciver 239

A method for numerical simulation of superfluid helium
Christine Darve, Luca Bottura, N. A. Patankar, and Steven Van Sciver 247

Heat transfer through Rutherford superconducting cable with novel pattern of polyimide electrical insulation in pressurized superfluid helium environment
Maciej Chorowski, Jaroslaw Polinski, and Michal Strychalski 255

CRYOGENIC POWER CABLES

Evaluating cryostat performance for naval applications
David Knoll, Dag Willen, James Fesmire, Wesley Johnson, Jonathan Smith, Barry Meneghelli, Jonathan Demko, Daniel George, Brian Fowler, and Patti Huber 265

Liquid air as a coolant for thermal management of long-length HTS cable systems
Jonathan Demko and William Hassenzahl 273
Experimental study of counterflow cooling using a test loop to simulate the thermal characteristics of a HTS cable system
Jonathan Demko

THERMAL AND FLUID MANAGEMENT FOR AEROSPACE

Methane cryogenic heat pipe for space use with a liquid trap for on-off switching
Juan Cepeda-Rizo, Jose Israel Rodriguez, and David Bugby

Airborne earth-observing imaging spectrometers utilizing commercial cryo coolers
Christopher Paine, Juan Cepeda-Rizo, Michael Eastwood, Sven Geier, and Jason Zan

Large volume liquid helium relief device verification apparatus for the alpha magnetic spectrometer
Richard John Klimas, Peter McIntyre, John Colvin, John Zeigler, Steven Van Sciver, and Samuel Ting

Experimental and numerical investigation of reduced gravity slosh dynamics for the characterization of cryogenic launch and space vehicle propellants
Laurie Walls, Daniel Kirk, and Javier de Luis

AMR AND THERMOACOUSTIC COOLERS

A modeling study on the geometry of active magnetic regenerator
Jing Li, Takenori Numazawa, Koichi Mastumoto, Yoshinori Yanagisawa, and Hideki Nakagome

Numerical simulation for hydrogen magnetic refrigeration
Yiyin Zhu, Jing Li, Hideyuki Hattori, Koichi Matsumoto, Yoshinori Yanagisawa, Hideki Nakagome, and Takenori Numazawa

A high-efficiency traveling-wave thermoacoustic refrigerator for cryogenic cooling operation: thermodynamic design and preliminary experiment
Jia Ren, Ercang Luo, Liming Zhang, Jianying Hu, and Wei Dai

A standing-wave thermoacoustic engine driven by liquid nitrogen
K. Wang, L. M. Qiu, B. Wang, Daming Sun, Ping Lou, J.F. Rao, and X.J. Zhang
HYDROGEN AND PROPELLANT SYSTEMS

Operational characteristics of the helium refrigeration system at HANARO-CNS
Mun Lee, Ho Young Choi, Jae Sam Han, Sung Hwan Cho, Min Su Kim, Soon Ock Hur, Wu Jung Son, Guk Hoon Ahn, and In-Cheol Lim 361

Design of a compact type cryogenic accumulator to mitigate a pressure fluctuation caused by a sudden KW-order heat load
Hideki Tatsumoto, Tomokazu Aso, Kiichi Ohtsu, Toshiaki Uehara, H. Sakurayama, Y. Kawakami, T. Kato, and M. Futakawa 368

Diagnosis of a poorly performing liquid hydrogen bulk storage sphere
Angela Gray Krenn 376

Design of a solid hydrogen target cryostat for positron moderation studies
Chad Nixon and Jacob Leachman 384

Dynamic behavior of the cryogenic hydrogen system using only a heater control
Hideki Tatsumoto, Tomokazu Aso, Kiichi Ohtsu, H. Sakurayama, Y. Kawakami, and M. Futakawa 391

HEAT TRANSFER SYSTEMS

Flexible cryogenic thermosyphon
Dogan Celik and Thomas Painter 401

Effect of shroud temperature on performance of a cryogenic loop heat pipe
Ya’nan Zhao, Tao Yan, and Jingtao Liang 409

A 100-W grade closed-cycle thermosyphon cooling system used in HTS rotating machines
Brice Felder, Motohiro Miki, Keita Tsuzuki, Nobuyuki Shinohara, Hironao Hayakawa, and Mitsuru Izumi 417

Design of a thermosiphon for cooling low-background HPGe arrays
Estanislao Aguayo, James Fast, and Doug James Reid 425
PULSE TUBE CRYOCOOLERS—II

The effect of component junction tapering on miniature cryocooler performance
Ted Conrad, Mihir G. Pathak, S. Mostafa Ghiasiaan, and Carl Kirkconnell 435

Experimental studies of thermoacoustic drive for the development of a pulse tube cryocooler
Bharatbhushan Vishnu Kamble, Biju T. Kuzhivel, Srinivasan Kasthurirengan, Upendra Behera, V. Krishnamoorthy, N. M. Hariharan, and P. Sivashanmugam 443

Numerical analysis on thermoacoustic prime movers for development of pulse tube cryocoolers
Upendra Behera, Srinivasan Kasthurirengan, Mathew Skaria, K. A. Shafi, Bharatbhushan Vishnu Kamble, and Biju Kuzhivel 451

Onset behavior of standing wave thermoacoustic pressure wave generator
Shreya Mehta, Keyur Desai, Hemant Bhimbhai Naik, and Milind Atrey 459

Coupling research in the thermoacoustically driven pulse tube cooler
Gang Zhou, Xin Huang, and Zhengyu Li 467

Coupling of regenerator and end load in a standing wave thermoacoustic engine
Xin Huang, Gang Zhou, Qing Li, and Zhongjun Hu 475

INSTRUMENTATION—I

SRF test areas cryogenic system controls graphical user interface
Brian Degraff, Gary Ganster, Arkadiy Klebaner, Andrey D. Petrov, and William Miles Soyars 485

The CERN revamping project of the obsolete cryogenic control systems: Strategy and results
Vitaliano Inglese, Marco Pezzetti, and Edouard Rogez 491

xi
Calibration and linearity verification of capacitance type cryo level indicators using cryogenically multiplexed diode array
R. Karunanithi, Subhash Jacob, Abhay Singh Singh Gour, M. Das, Durgesh Shrikantiah Nadig, and M. V. N. Prasad

Directional oriented magnetic field induced temperature error of PT-500 sensor at cryogenic environment
Rajinikumar Ramalingam and Michael Schwartz

Reliability and stability of three cryogenic temperature sensor models subjected to accelerated thermal cycling
S. Scott Courts and John Krause

PULSE TUBE CRYOCOOLERS—III

Development of moving magnet type linear motor for dual piston compressor for pulse tube cryocooler
R. Karunanithi, Subhash Jacob, Abhay Singh Singh Gour, C. Damu, and M. Das

Development of high efficiency 4 K two-stage pulse tube cryocoolers with split valve unit
Kyosuke Nakano, Mingyao Xu, Hirokazu Takayama, Akihiro Tsuchiya, and Motokazu Saito

Design of a large-capacity multi-piston pulse tube cryocooler
Jianying Hu, Ercang Luo, Zhanghua Wu, Guoyao Yu, and Wei Dai

Experimental investigation of a u-shape pulse tube cryocooler with one regenerator and two pulse tubes
Chuanlin Yin, Houlei Chen, Miguang Zhao, Qingsheng Fei, Jinghui Cai, and Yali Li

Measurement and analysis of energy flow in Stirling-type pulse tube refrigerator
Taekyung Ki, Sangkwon Jeong, Mansu Seo, and Inmyong Park

CURRENT LEADS

Numerical model for conduction cooled current lead heat loads
Michael Joseph White, Heiner Brueck, and Xilong Wang
Hts tape-based multi-line current lead
 Michael Merker, Jean Delmas, and Robert Webber 573

Tests of copper and HTS leads with a two-stage pulse tube drop-in cooler
 Michael Green and Bert Wang 581

Using a single-stage GM cooler to augment the cooling of the shields and leads of a magnet cooled with two-stage coolers
 Michael Green and Steve Virostek 589

Performance test and thermal analysis of conduction-cooled optimized current leads at non-optimum operation
 Soumen Kar, Phaneendra Konduru, Rajesh Kumar, Manoj Kumar, Anup Choudhury, Ram Gopal Sharma, and Tripti Sekhar Datta 597

HEAT TRANSFER—I

Development and test of a cryogenic pulsating heat pipe and a pre-cooling system
 Fabien Bonnet, Philippe Gully, and Vadim Nikolayev 607

Plate fin heat exchanger model with axial conduction and variable properites
 Benjamin Jacob Hansen, Michael Joseph White, and Arkadiy Klebaner 615

A method for estimating cryogenic cooling load in an infrared payload
 Jeff Cha and Ed Fong 623

Elongating axial conduction path design to enhance performance of cryogenic compact pche (printed circuit heat exchanger)
 Seungwhan Baek, Jinhooye Kim, Gyuwan Hwang, and Sangkwon Jeong 631

LTS SUPERCONDUCTING MAGNET SYSTEMS—I

Nb$_3$Sn Cable Development for the 11 T DS Dipole Demonstration Model
 Emanuela Barzi, Vito Lombardo, Alfred Nobrega, Daniele Turrioni, Ryuji Yamada, Alexander Zlobin, and Mikko Karppinen 641
Construction and component testing of TAMU3, a 14 Tesla stress-managed Nb$_3$Sn model dipole
Eddie Frank Holik III, Chris Benson, Raymond Blackburn, Nick Diaczenko, Timothy Elliott, Andrew Jaisle, Alfred McInturff, Peter McIntyre, and Akhdiyor Sattarov 649

Quench Protection Challenges in Long Nb$_3$Sn Accelerator Magnets
Tiina-Mari Salmi, Giorgio Ambrosio, S. Caspi, Guram Chlachidze, Marc Dhallé, Helene Felice, Paolo Ferracin, M. Marchevsky, G. Sabbi, and Herman ten Kate 656

STIRLING/G-M/JTCOOLERS

Novel diaphragm based Stirling cryocooler
Alan Caughley, Alan Tucker, Michael Gschwendtner, and Mathieu Sellier 667

Scaling STI's sapphire cryocooler for applications requiring higher heat loads
Abhijit Karandikar and Andreas Fiedler 675

Experimental investigations and improvements for the 10 K G-M refrigerator
Xihuan Hao and Yonglin Ju 683

Temperature instability comparison of micro- and mesoscale Joule-Thomson cryocoolers employing mixed refrigerants
Peter Bradley, Ray Radebaugh, R.J. Lewis, M.-H. Lin, and Y.C. Lee 690

Performance analysis of small capacity liquid nitrogen generator based on Joule-Thomson refrigerator coupled with air separation membrane
Agnieszka Piotrowska-Hajnus and Maciej Chorowski 698

Investigations on two-phase heat exchanger for mixed refrigerant Joule-Thomson cryocooler
Purushottam Ardhapurkar, Arunkumar Sridharan, and Milind Atrey 706
HEAT TRANSFER—II

Modeling of a vertical circulation open loop in two-phase helium
Bertrand Baudouy 717

Wall shape optimization for a thermosyphon loop featuring corrugated pipes
Patricio I. Rosen Esquivel, Jan H.M. ten Thije Boonkkamp, Jacques A. M. Dam, and Robert M. M. Mattheij 724

Experimental investigation of free convective heat transfer along inclined pipes in high-pressure cryogenic storage tanks
Robin Langebach and Christoph Haberstroh 732

Flow boiling heat transfer characteristics of hexafluoroethane in a horizontal tube
S. Wang, Maoqiong Gong, G. F. Chen, J. F. Wu, Zhaohu Sun, and X. Zou 740

Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes
Hideki Tatsumoto, Yasuyuki Shirai, Masahiro Shiotsu, Koichi Hata, Yoshihiro Naruo, Hiroyuki Kobayashi, Yoshifumi Imatani, and K. Kinoshita 747

CRYOGENIC FUELS AND STORAGE

Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space
Charles L. Hannon, Brady Krass, Jake Hogan, and John Brisson 757

Modeling and testing of cryo-adsorbent hydrogen storage tanks with improved thermal isolation
Alexander William Raymond and Joseph Reiter 765

Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft
Gary L. Mills, Brian Buchholtz, and Al Olsen 773
LARGE SCALE SYSTEMS—THEORY AND PROCESS

Theory of cascade refrigeration
Hans H. Quack
783

Options for cryogenic load cooling with forced flow helium circulation
Peter Knudsen, Venkatarao Ganni, and Roberto Than
790

Process options for nominal 2-K helium refrigeration system designs
Peter Knudsen and Venkatarao Ganni
800

Dynamic gas bearing turbine technology in hydrogen plants
Klaus Ohlig and Stefan Bischoff
814

Recent developments on Air Liquide advanced technologies turbines
Franck Deleayre, Cecile Gondrand, Luc Drevard, Fabien Durand, and
Gerard Marot
820

Remarks about efficient control of the cryogenic power of a helium
refrigeration plant
G. M. Gistau Baguer
828

Response to remarks regarding the optimal design and operation of
helium refrigeration systems
Venkatarao Ganni and P. Knudsen
832

AEROSPACE COOLER COMPONENTS

Development of the cold end of a gravity-insensitive closed cycle

dilution refrigerator
Gunaranjan Chaudhry, Angela Volpe, Philippe Camus, Sebastian
Triqueneaux, and Gerard Vermeulen
837

Nitrogen activated-carbon sorption compressor
Nir Tzabar and Gershon Grossman
845

Heat switches providing low-activation power and quick-switching time
for use in cryogenic multi-stage refrigerators
Mark Oliver Kimball and Peter J. Shirron
853
Refurbishment and testing of the 1970's era LASS solenoid coils for Jlab's Hall D
Joshua Ballard, George Herman Biallas, Paul Brindza, Thomas Carstens, Jonathan Creel, Hovanes Egiyan, Floyd Martin, Yi Qiang, Scot Spiegel, Mark Stevens, Mark Wissmann, and Elliott Wolin 861

Fabrication and test of 4M long Nb₃Sn quadrupole coil made of RRP-114/127 strand
Rodger Bossert, Giorgio Ambrosio, Nikolai Andreev, Emanuela Barzi, Guram Chlachidze, Vadim Kashikhin, Michael Lamm, Alfred Nobrega, Igor Novitski, Darryl Orris, Mike Tartaglia, Daniele Turroni, Ryuji Yamada, and Alexander Zlobin 869

Cryogenic system design of 11 GEV/C super high momentum spectrometer superconducting magnets at Jefferson Lab
Eric Sun, Paul Brindza, Steven Lassister, and Mike Fowler 877

Mu2e production solenoid cryostat conceptual design
Thomas H. Nicol, Vadim Kashikhin, Tom Page, and Thomas J. Peterson 885

Conceptual design of the Mu2e production solenoid cold mass
Vadim Kashikhin, Giorgio Ambrosio, Nikolai Andreev, Michael Lamm, Nikolai Mokhov, Thomas H. Nicol, Tom Page, and Vitaly Pronskikh 893

Cryostat design and development for a superconducting undulator for the APS
Joel Fuerst, Charles Doose, Quentin Hasse, Yury Ivanyushenkov, Matthew Kasa, Elizabeth Moog, John Pfotenhauer, Daniel Potratz, Denise Skiadopoulos, Vasily Syrovatin, and Emil Trakhtenberg 901

Experimental studies on thermal behavior of 6 Tesla cryogen-free superconducting magnet system
Soumen Kar, Phaneendra Konduru, Rajesh Kumar, Manoj Kumar, Anup Choudhury, Ram Gopal Sharma, and Tripti Sekhar Datta 909

Thermal design of an Nb₃Sn high field accelerator magnet
Slawomir Pietrowicz and Bertrand Baudouy 918
SRF—I

Study of thermal radiation shields for the ILC cryomodule

Design and development of a new SRF cavity cryomodule for the ATLAS intensity upgrade
Mark Kedzic, Zachary Conway, Joel Fuerst, Scott Gerbick, Michael Kelly, James Morgan, Peter Ostroumov, Michael O'Toole, and Kenneth Shepard 937

Measurement of the dielectric properties of high-purity sapphire at 1.865 GHz from 2-10 Kelvin
Nathaniel Johnston Pogue, Peter McIntyre, Akhdiyor Sattarov, and Charles Reece 945

High-RRR thin-films of Nb produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CED™)
Enrique Francisco Valderrama, Colt James, Mahadevan Krishnan, Xin Zhao, Larry Phillips, Charles Reece, and Kang Seo 953

New injector cryostat module based on 3 GHz SRF cavities for the S-Dalinac
Thorsten Kuerzeder, Jens Conrad, Ralf Eichhorn, Florian Hug, Achim Richter, and Sven Sievers 961

The injector cryomodule for E-Linac at TRIUMF

Phonon scattering in the thermal conductivity of large-grain superconducting niobium as a function of heat treatment temperature
Saravan Kumar Chandrasekaran, Tom Bieler, Chris Compton, and Neil T. Wright 976

xviii