Contents

1 Introduction: The Twin Mysteries of Mass 1
 The Quality of Inertia ... 1
 Straight-Line Motion ... 2
 Forces in Combination .. 3
 The Independence of the Effects of Perpendicular Forces on Straight-Line Motion ... 4
 Inertial Frames of Reference and Relative Motion 5
 The Attraction of Masses ... 7
 The Force of Gravity: Falling 7
 The Attractive Force of Gravity 8
 Gravity and Distance ... 9
 Newton’s Universal Law of Gravitation 9
 Gravitational Acceleration 10
 Gravitation and the Laws of Motion 11
 Gravity, Inertia, and Curvilinear Motion in Space 13
 Reference .. 15

2 Galileo’s Great Discovery: How Things Fall 17
 The Distance a Thing Falls 17
 The Meaning of Constant Acceleration 20
 Graphing Velocity and Time in Uniformly Accelerated Motion ... 23
 If Galileo Only Knew Calculus: A Quick Look at Instantaneous Velocity ... 27
 Using Limits to Find the Acceleration of a Freely-Falling Body ... 31
 A Summary of Galilean Equations 33
 Notes on Using the Law of Conservation of Mechanical Energy to Derive the Galilean Distance Equation ... 33
 Reference .. 36
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Christian Huygens’ Remarkable Pendulum</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Of Planes and Pendulums: A Historical Sketch</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>How Gravitational Acceleration Was Measured</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Determining How Far a Body Falls in One Second</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Deriving an Equation for the (Approximate)</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Period of a Pendulum</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>The Pendulum’s Satisfying Coincidence with Circular Motion</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>The Geometry of the Solar System: Kepler’s Laws of Planetary Motion</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>The Basic Geometry of the Ellipse</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Determining the Eccentricity of the Moon’s Orbit</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Deriving Kepler’s Law of Areas</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Determining the Semi-major Axis of the Asteroid Ceres</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>How Conic Sections May Be Generated by One Equation</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Graphing the Orbit of Comet Schwassmann-Wachmann</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>3 Using Rectangular Coordinates</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>How the Moon Falls Toward the Earth (but Keeps Missing It)</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>The Facts of Inertia: Newton’s First Law</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>What Is Centripetal Acceleration?</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Comparing Centripetal Accelerations in Different Orbits</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Proving Principia’s Proposition IV: The Proportionality of Centripetal Forces in Circular Orbits</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Determining if Newton’s Centripetal Acceleration for Circular Orbits Is Consistent with the Galileo’s Distance-Time Squared Rule for Falling Bodies</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Deriving Galileo’s Equation Geometrically from Newton’s Equation for Centripetal Acceleration</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Reflections Upon Centripetal Acceleration</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Inertial (“Centrifugal”) Force</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>A Useful Notation for Circular Motion</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>Newton’s Moon Test</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Summary of Newton’s Moon Test</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>The First Part of the Test</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>The Second Part of the Test</td>
<td>110</td>
</tr>
</tbody>
</table>
The Third Part of the Test 110
The Fourth Part of the Test 110
Newton's Demonstration that "The Moon
Gravitates Towards the Earth" 111
A Simple Confirmation of the Inverse Square Law
Between Earth and Moon Using Modern Data 116
A Geometric Approximation of the Moon's Period
(and Other Diversions) ... 118
A Pendulum in Space ... 122
References .. 125

7 Newton Demonstrates How an Inverse Square Law Could
Explain Planetary Motions 127
Clearing the Mathematical Path to the Inverse
Square Law .. 127
And Conversely ... 132
Summary of Above Corollaries to Proposition IV 133
A Small Lesson ... 133
Of Circles and Ellipses ... 133
Evidence from Distant Worlds: The Moons of Jupiter
and Saturn Obey Kepler's Third Law, and Therefore
the Inverse Square Law ... 134
The Motion of Jupiter's Satellites as a Test
for the Universality of the Inverse Square Law 135
Finding the Keplerian Proportionality Constant
in the Jovian Satellite System 138
Using a Modern Jovian Proportionality Constant to Find
the Periodic Time of Jupiter's Inner Satellite Amalthea 140
Applying the Proportionality Constant in Kepler's Third
Law for the Earth-Moon System to Find the Distance
to a Geosynchronous Satellite 142
References .. 146

8 Newton's Master Stroke: The Universal Law of Gravitation .. 147
Working with Forces: Deriving the Inverse Square Law
from Newton's Second Law 149
Constructing Newton's Gravity Equation 150
Reflections upon the Equilibrium of Gravitational and Inertial
(Centrifugal) Forces of a Mass in Orbit 155
Kepler's Third Law as Modified by Newton 158
Why, After Newton, It Became Evident that Kepler's Proportions
Are Not Strictly Satisfied for Large Secondary Masses 161
The Strict Proportionality of Kepler's Third Law 161
The Deviation from Strict Keplerian Proportionality 162
Comparing Periods with and Without the Secondary Mass ... 163
"Weighing" Jupiter the Modern Way .. 223
Calculating the Combined Masses of Quaoar
and Its Satellite Weywot ... 225
Manipulating Units to Simplify Equations 227
Reducing Kepler’s Third Law to Its Simplest Form 228
Finding the Combined Masses of Sirius and Its Companion 230
Determining the Individual Masses in the Double
Star System Alpha Centauri ... 231
What Is the Mass of Our Galaxy? (And Observations
on Dark Matter) .. 234
References ... 238

12 Motion in Elliptical Orbits ... 239
Velocity Along the Apsides of Elliptical Orbits 239
The Orbital Velocities of Earth Around the Sun 242
Comparing Circular and Elliptical Orbits 242
Angular Velocity in Circular and Elliptical Orbits 244
Gravitation and Elliptical Orbits 245
The Orbital Velocities of Mars ... 246
Kepler Revisited .. 248
Finding the Velocity of an Artificial Satellite
in Earth Orbit When Just Its Perigee
and Apogee Are Known ... 249
Deriving Apsidal Velocities in an Elliptical Orbit
from the Laws of Conservation of Energy
and Momentum .. 251
The Gaussian Constant in Celestial Mechanics 258
Using the Gaussian Constant to Find Heliocentric Periods . 259
Applying the Gaussian Constant to Find Heliocentric
Orbital Velocities ... 260
Simple Computation of Apsidal Velocities of Objects
in Heliocentric Orbits .. 262
Exploring Sedna’s Orbit ... 262

13 The Energy and Geometry of Orbits 267
The Total Energy in a Circular Orbit 268
The Total Energy in an Elliptical Orbit 269
Velocity Anywhere Along the Elliptical Orbit 271
The Very Particular Parabolic Orbit
and the Velocity of Escape ... 272
Hyperbolic Trajectories .. 274
Summary of Orbital Energy Relationships 274
Determining the Velocity of a Near Earth
Asteroid Which Passed by Earth 278
Newton, Halley and the Great Comet of 1680 281
References ... 288
14 Introduction to Spaceflight .. 289
 Using a Hohmann Transfer to Achieve
 a Geostationary Orbit .. 290
 Designing an Orbit for a Lunar Mission 293
 Planning a Mission to Mars ... 299
 Calculating the Velocity Needed for the Trip to Mars 300
 Using the Energy Equations to Define
 the Orbit to Mars .. 303
 Summary of Some Key Energy-Derived Equations 304
 Notes on the Apollo 11 Moon Mission 306
 Reference .. 312

15 Getting Oriented: The Sun, the Earth and the Ecliptic Plane 313
 Visualizing the Heliocentric Elements
 of an Elliptical Orbit ... 313
 Schematic of Selected Elements of the Orbits of Mars,
 Jupiter and Saturn .. 317
 The Heliocentric Longitude of a Body 319
 Summary of the Elements of the Heliocentric Orbit 319
 Method for Determining Earth’s Heliocentric Longitude 321
 Finding the Earth’s Heliocentric Longitude
 at Close Encounter with Asteroid 2010 TD54 322
 Calculating the Mean Anomaly and Heliocentric
 Longitude of the Near Earth Asteroid 2010 TD54 324
 Graphing the Inner Orbit of Comet West C/1975 V1-A 327
 References .. 335

16 An Introduction to Kepler’s Problem: Finding the True
 Anomaly of an Orbiting Body 337
 The True Anomaly Is the Body’s Actual Position in Orbit 337
 The Limitations of Using Mean Daily Motion
 to Find Position in an Elliptical Orbit 339
 Kepler’s Auxiliary Circle: Determining the True Anomaly
 from the Eccentric Anomaly 339
 Kepler’s Equation: Finding the Eccentric Anomaly
 from the Mean Anomaly ... 341
 Determining the Eccentric Anomaly of Near
 Earth Asteroid 2010 TD54 at the Time of Its Closest
 Approach to Earth .. 341
 Finding the True Anomaly of Near Earth Asteroid 2010
 TD54 at the Time of Its Closest Approach to Earth 343
 Asteroid 2007 WD5’s Passed by Mars: How Close
 Did It Come? ... 347
 References .. 354
17 What Causes the Tides? .. 355
Calculating the Differential Gravitational Forces Exerted
by the Moon on the Earth .. 358
Deriving a General Equation for Determining
Tidal Forces ... 360
Visualizing Tidal Pull by Comparing Theoretical
and Actual Orbital Velocities at Opposite Points
on Earth .. 365
Estimating the Lifting Force of the Moon 367
References .. 375

18 Moons, Rings, and the Ripping Force of Tides 377
Deriving an Equation for the Roche Limit and Applying
It to the Earth–Moon System ... 378
Finding the Roche Limit for Saturn and Its Innermost
Satellite Pan .. 384
Comet Shoemaker-Levy 9’s Fatal Encounter
with Jupiter .. 388
How Comet Lovejoy C/2011 W3 Barely Survived
the Solar Furnace .. 391
References .. 395

19 Hovering in Space: Those Mysterious Lagrangian Points 397
Deriving Equations for Finding the L1 and L2 Points
in the Earth–Sun System .. 399
Determining the Accelerations on a Satellite
at the Sun–Earth L1 Point .. 404
Calculating the Heliocentric Orbital Velocities of a Spacecraft
at the Sun–Earth L1 and L2 Points 408
Where the Fictional “Counter-Earth” Would Be: The L3
Point in the Earth–Sun System 410
Space Station Parking Spot for Lunar Exploration: Determining
the L1 Point in the Earth–Moon System 411
The Equilateral L4 and L5 Lagrangian Points
in the Earth–Moon System .. 413
References .. 418

Appendix: Solutions to Problems 419

Index .. 427