Contents

1 Modern Steelmaking in Electric Arc Furnaces: History and Development

1.1 General Requirements to Steelmaking Units

1.1.1 Process Requirements

1.1.2 Economic Requirements

1.1.3 Environmental and Health and Safety Requirements

1.2 High-Power Furnaces: Issues of Power Engineering

1.2.1 Increasing Power of EAF Transformers

1.2.2 Specifics of Furnace Electrical Circuit

1.2.3 Optimum Electrical Mode of the Heat

1.2.4 Direct Current Furnaces

1.2.5 Problems of Energy Supply

1.3 The Most Important Energy and Technology Innovations

1.3.1 Intensive Use of Oxygen, Carbon and Chemical Heat

1.3.2 Foamed Slag Method

1.3.3 Furnace Operation with Hot Heel

1.3.4 Single Scrap Charging

1.3.5 Use of Hot Metal and Reduced Iron

1.3.6 Post-Combustion of CO Above the Bath

1.3.7 Increase in Capacity of Furnaces

1.3.8 Continuous Charging and Melting of Scrap in the Liquid Bath

References

2 Electric Arc Furnace as Thermoenergetical Unit

2.1 Thermal Performance of Furnace: Terminology and Designations

2.2 External and Internal Sources of Thermal Energy: Useful Heat

2.3 Factors Limiting the Power of External Sources

2.4 Key Role of Heat Transfer Processes

Reference
3 The Fundamental Laws and Calculating Formulae of Heat Transfer Processes ... 33
 3.1 Three Ways of Heat Transfer: General Concepts .. 33
 3.2 Conduction Heat Transfer ... 34
 3.2.1 Fourier's Law, Flat Uniform Wall. Electrical–Thermal Analogy .. 34
 3.2.2 Coefficient of Thermal Conductivity .. 37
 3.2.3 Multi-Layer Flat Wall ... 39
 3.2.4 Contact Thermal Resistance .. 41
 3.2.5 Uniform Cylindrical Wall ... 42
 3.2.6 Multi-Layer Cylindrical Wall .. 43
 3.2.7 Simplifying of Formulae for Calculation of Cylindrical Walls 44
 3.2.8 Bodies of Complex Shape: Concept of Numerical Methods of Calculating Stationary and Non-Stationary Conduction Heat Transfer 45
 3.3 Convective Heat Exchange ... 49
 3.3.1 Newton's Law: Coefficient of Heat Transfer α .. 49
 3.3.2 Two Modes of Fluid Motion .. 50
 3.3.3 Boundary Layer ... 50
 3.3.4 Free (Natural) Convection ... 52
 3.3.5 Convective Heat Transfer at Forced Motion ... 53
 3.3.6 Heat Transfer Between Two Fluid Flows Through Dividing Wall; Heat Transfer Coefficient k .. 55
 3.4 Heat Radiation and Radiant Heat Exchange .. 58
 3.4.1 General Concepts .. 58
 3.4.2 Stefan–Boltzmann Law; Radiation Density; Body Emissivity .. 59
 3.4.3 Heat Radiation of Gases .. 62
 3.4.4 Heat Exchange Between Parallel Surfaces in Transparent Medium: Effect of Screens .. 63
 3.4.5 Heat Exchange Between the Body and Its Envelope: Transparent Medium 65
 3.4.6 Heat Exchange Between the Emitting Gas and the Envelope 66

4 Energy (Heat) Balances of Furnace ... 67
 4.1 General Concepts ... 67
 4.2 Heat Balances of Different Zones of the Furnace ... 69
 4.3 Example of Heat Balance in Modern Furnace ... 71
 4.4 Analysis of Separate Items of Balance Equations ... 72
 4.4.1 Output Items of Balance .. 72
 4.4.2 Input Items of Balance .. 75
4.5 Chemical Energy Determination Methods
- 4.5.1 Utilization of Material Balance Data
- 4.5.2 About the So-Called "Energy Equivalent" of Oxygen
- 4.5.3 Calculation of Thermal Effects of Chemical Reactions by Method of Total Enthalpies

5 Energy Efficiency Criteria of EAFs
- 5.1 Preliminary Considerations
- 5.2 Common Energy Efficiency Coefficient of EAF and Its Deficiencies
- 5.3 Specific Coefficients η for Estimation of Energy Efficiency of Separate Energy Sources and EAF as a Whole
- 5.4 Determining Specific Coefficients η
 - 5.4.1 Electrical Energy Efficiency Coefficient η_{EL}
 - 5.4.2 Fuel Energy Efficiency Coefficient of Oxy-Gas Burners η_{NG}
 - 5.4.3 Energy Efficiency Coefficient of Coke Charged Along with Scrap
 - 5.4.4 Determining the Specific Coefficients η by the Method of Inverse Heat Balances
- 5.5 Tasks of Practical Uses of Specific Coefficients η

6 Preheating of Scrap by Offgases in Combination with Burners
- 6.1 Potentials and Limiting Factors
 - 6.1.1 Expediency of Heating
 - 6.1.2 Comparison of Consumptions of Useful Heat for Scrap Heating, Scrap Meltdown, and for Heating of Metal up to Tapping Temperature
 - 6.1.3 Reduction in Electrical Energy Consumption with High-Temperature Heating of Scrap: Calculation of Potentials
 - 6.1.4 Sample of Realization of High-Temperature Heating: Process BBC-Brusa
 - 6.1.5 Specifics of Furnace Scrap Hampering Its Heating
- 6.2 Heating on Conveyor
 - 6.2.1 Consteel Furnaces with Continuous Scrap Charging into the Bath
 - 6.2.2 Comparison of Melting Rates, Productivities, and Electrical Energy Consumptions Between the Consteel Furnaces and EAFs
 - 6.2.3 Scrap Preheating Temperature
Contents

6.3 Heating Scrap in a Large-Thickness Layer .. 111
6.3.1 Heat Transfer Processes ... 111
6.3.2 Heating Scrap in Baskets and Special Buckets 114
6.3.3 Twin-Shell Furnaces with Removal of Off-Gas
Through the Second Bath ... 118
6.4 Heating Scrap in Shaft Furnaces ... 120
6.4.1 Shaft Furnaces with Fingers Retaining Scrap 120
6.4.2 Shaft Furnaces with Continuous Scrap Charging
into the Liquid Bath by Pushers .. 122
6.5 From Utilizing Off-Gases to Scrap Preheating
by Burners Only .. 126
References ... 127

7 Replacement of Electric Arcs with High Power
Oxy-Gas Burners ... 129
7.1 Attempts for Complete Replacement ... 129
7.2 Potentialities of Existing Burners: Heat Transfer,
Limiting Factors .. 131
7.3 High-Power Rotary Burners (HPR-Burners) 134
7.3.1 Fundamental Features ... 134
7.3.2 Slag Door Burners: Effectiveness
of Flame-Direction Changes ... 134
7.3.3 Roof Burners .. 136
7.3.4 Oriel Burners ... 138
7.3.5 Sidewall Burners ... 140
7.4 Two-Stage Process of the Heat with Use of HPR Burners:
Industrial Trials .. 143
7.4.1 General Energy Ratios ... 143
7.4.2 Process with a Door Burner in 6-ton Furnaces 145
7.4.3 Process with Roof Burners in 100-ton
and 200-ton Furnaces .. 148
7.5 Fuel Arc Furnaces (FAFs) ... 151
7.5.1 FAF with Scrap Heating in a Furnace Freeboard 151
7.5.2 Conveyor FAFs with Continuous Scrap Charging
into the Liquid Bath .. 153
7.5.3 Shaft FAFs with Continuous Scrap Charging
by a Pusher .. 155
7.6 Economy of Replacement of Electrical Energy with Fuel 157
References ... 160

8 Basic Physical–Chemical Processes in Liquid Bath Blown with
Oxygen: Process Mechanisms .. 161
8.1 Interaction of Oxygen Jets with the Bath: General Concepts 161
8.2 Oxidation of Carbon .. 163

7 Replacement of Electric Arcs with High Power

Oxy-Gas Burners 129

7.1 Attempts for Complete Replacement 129
7.2 Potentialities of Existing Burners: Heat Transfer,
Limiting Factors ... 131
7.3 High-Power Rotary Burners (HPR-Burners) 134
7.3.1 Fundamental Features .. 134
7.3.2 Slag Door Burners: Effectiveness
of Flame-Direction Changes ... 134
7.3.3 Roof Burners .. 136
7.3.4 Oriel Burners ... 138
7.3.5 Sidewall Burners ... 140
7.4 Two-Stage Process of the Heat with Use of HPR Burners:
Industrial Trials .. 143
7.4.1 General Energy Ratios ... 143
7.4.2 Process with a Door Burner in 6-ton Furnaces 145
7.4.3 Process with Roof Burners in 100-ton
and 200-ton Furnaces .. 148
7.5 Fuel Arc Furnaces (FAFs) ... 151
7.5.1 FAF with Scrap Heating in a Furnace Freeboard 151
7.5.2 Conveyor FAFs with Continuous Scrap Charging
into the Liquid Bath .. 153
7.5.3 Shaft FAFs with Continuous Scrap Charging
by a Pusher .. 155
7.6 Economy of Replacement of Electrical Energy with Fuel 157
References ... 160

8 Basic Physical–Chemical Processes in Liquid Bath Blown with
Oxygen: Process Mechanisms .. 161
8.1 Interaction of Oxygen Jets with the Bath: General Concepts 161
8.2 Oxidation of Carbon .. 163
Contents

8.3 Melting of Scrap ... 164
8.4 Heating of the Bath .. 166

9 Bath Stirring and Splashing During Oxygen Blowing 169
9.1 Stirring Intensity: Methods and Results of Measurement 169
9.2 Mechanisms of Bath Stirring 170
 9.2.1 Stirring Through Circulation and Pulsation 170
 9.2.2 Stirring by Oxygen Jets and CO Bubbles 171
9.3 Factors Limiting Intensity of Bath Oxygen Blowing in Electric Arc Furnaces .. 172
 9.3.1 Iron Oxidation: Effect of Stirring 172
 9.3.2 Bath Splashing ... 174
9.4 Oxygen Jets as a Key to Controlling Processes in the Bath ... 177
References .. 178

10 Jet Streams: Fundamental Laws and Calculation Formulae 179
10.1 Jet Momentum .. 179
10.2 Flooded Free Turbulent Jet: Formation Mechanism and Basic Principles ... 180
10.3 Subsonic Jets: Cylindrical and Tapered Nozzles 182
10.4 Supersonic Jets and Nozzles: Operation Modes 186
10.5 Simplified Formulae for Calculations of High-Velocity Oxygen Jets and Supersonic Nozzles 188
 10.5.1 A Limiting Value of Jets’ Velocity 190
10.6 Long Range of Jets ... 191
Reference .. 191

11 Devices for Blowing of Oxygen and Carbon into the Bath 193
11.1 Blowing by Consumable Pipes Submerged into Melt and by Mobile Water-Cooled Tuyeres 193
 11.1.1 Manually Operated Blowing Through Consumable Pipes .. 194
 11.1.2 BSE Manipulator ... 194
 11.1.3 Mobile Water-Cooled Tuyeres 196
11.2 Jet Modules: Design, Operating Modes, Reliability 199
 11.2.1 Increase in Oxygen Jets Long Range: Coherent Jets 201
 11.2.2 Effectiveness of Use of Oxygen, Carbon, and Natural Gas in the Modules 203
11.3 Blowing by Tuyeres Installed in the Bottom Lining 205
 11.3.1 Converter-Type Non-Water-Cooled Tuyeres 205
 11.3.2 Tuyeres Cooled by Evaporation of Atomized Water 207
 11.3.3 Explosion-Proof Highly Durable Water-Cooled Tuyeres for Deep Blowing 209
References .. 214
12 Water-Cooled Furnace Elements

12.1 Preliminary Considerations

12.2 Thermal Performance of Elements: Basic Laws.

12.3 Principles of Calculation and Design of Water-Cooled Elements

12.4 Examples of Calculation Analysis of Thermal Performance of Elements

12.4.1 Mobile Oxygen Tuyere

12.4.2 Elements with Pipes Cast into Copper Body and with Channels.

12.4.3 Jet Cooling of the Elements

12.4.4 Oxygen Tuyere for Deep Blowing of the Bath

References

13 Principles of Automation of Heat Control

13.1 Preliminary Considerations

13.2 Automated Management Systems

13.2.1 Use of Accumulated Information: Static Control.

13.2.2 Mathematical Simulation as Method of Control

13.2.3 Dynamic Control: Use of On-line Data

13.3 Rational Degree of Automation

References

14 Off-Gas Evacuation and Environmental Protection

14.1 Preliminary Considerations

14.2 Formation and Characteristics of Dust–Gas Emissions

14.2.1 Sources of Emissions

14.2.2 Primary and Secondary Emissions

14.2.3 Composition, Temperature, and Heat Content of Off-Gases

14.3 Capturing Emissions: Preparing Emissions for Cleaning in Bag Filters

14.3.1 General Description of the System

14.3.2 Problems of Toxic Emissions

14.3.3 A Simplified Method of Gas Parameters’ Calculation in the Direct Evacuation System

14.3.4 Energy Problems