Contents

List of Contributors xvii
Preface xix

I FUNDAMENTALS AND MICROBIOLOGICAL ASPECTS 1

1 Introduction to Air Pollution 3
Christian Kennes and Maria C. Veiga 3
1.1 Introduction 3
1.2 Types and sources of air pollutants 3
  1.2.1 Particulate matter 5
  1.2.2 Carbon monoxide and carbon dioxide 6
  1.2.3 Sulphur oxides 7
  1.2.4 Nitrogen oxides 7
  1.2.5 Volatile organic compounds (VOCs) 9
  1.2.6 Odours 10
  1.2.7 Ozone 11
  1.2.8 Calculating concentrations of gaseous pollutants 11
1.3 Air pollution control technologies 11
  1.3.1 Particulate matter 11
  1.3.2 Volatile organic and inorganic compounds 12
  1.3.3 Environmentally friendly bioenergy 17
1.4 Conclusions 17
References 17

2 Biodegradation and Bioconversion of Volatile Pollutants 19
Christian Kennes, Haris N. Abubacker and Maria C. Veiga 19
2.1 Introduction 19
2.2 Biodegradation of volatile compounds 20
  2.2.1 Inorganic compounds 20
  2.2.2 Organic compounds 21
2.3 Mass balance calculations 24
2.4 Bioconversion of volatile compounds 25
  2.4.1 Carbon monoxide and carbon dioxide 25
  2.4.2 Volatile organic compounds (VOCs) 26
2.5 Conclusions 27
References 27
4.7.8 Moisture content and relative humidity 81
4.7.9 Polluted gas flow direction 83
4.7.10 Carbon dioxide generation rates 83
4.7.11 Pressure drop 85
4.8 Role of microorganisms and fungal growth in biofilters 87
4.9 Dynamic loading pattern and starvation conditions in biofilters 89
4.10 On-line monitoring and control (intelligent) systems for biofilters 93
4.10.1 On-line flame ionization detector (FID) and photo-ionization detector (PID) analysers 93
4.10.2 On-line proton transfer reaction–mass spectrometry (PTR-MS) 94
4.10.3 Intelligent moisture control systems 94
4.10.4 Differential neural network (DNN) sensor 95
4.11 Mathematical expressions for biofilters 95
4.12 Artificial neural network-based models 97
4.12.1 Back error propagation (BEP) algorithm 97
4.12.2 Important considerations during neural network modelling 99
4.12.3 Neural network model development for biofilters and specific examples 103
4.13 Fuzzy logic-based models 105
4.14 Adaptive neuro-fuzzy interference system-based models for biofilters 108
4.15 Conclusions 111
References 111

5 Biotrickling Filters 121
Christian Kennes and María C. Veiga
5.1 Introduction 121
5.2 Main characteristics of BTFs 122
5.2.1 General aspects 122
5.2.2 Packing material 123
5.2.3 Biomass and biofilm 126
5.2.4 Trickling phase 126
5.2.5 Gas EBRT 128
5.2.6 Liquid and gas velocities 129
5.3 Pressure drop and clogging 130
5.3.1 Excess biomass accumulation 130
5.3.2 Accumulation of solid chemicals 133
5.4 Full-scale applications and scaling up 134
5.5 Conclusions 135
References 135

6 Bioscrubbers 139
Pierre Le Cloirec and Philippe Humeau
6.1 Introduction 139
6.2 General approach of bioscrubbers 140
6.3 Operating conditions 141
6.3.1 Absorption column 142
6.3.2 Biodegradation step – activated sludge reactor 143
6.4 Removing families of pollutants 143
6.4.1 Volatile organic compound (VOC) removal
6.4.2 Odor control
6.4.3 Sulfur compounds degradation
6.5 Treatment of by-products generated by bioscrubbers
6.6 Conclusions and trends
References

7 Membrane Bioreactors
Raquel Lebrero, Raúl Muñoz, Amit Kumar and Herman Van Langenhove
7.1 Introduction
7.2 Membrane basics
7.2.1 Types of membranes
7.2.2 Membrane materials
7.2.3 Membrane characterization parameters
7.2.4 Mass transport through the membrane
7.3 Reactor configurations
7.3.1 Flat-sheet membranes
7.3.2 Tubular configuration membranes
7.3.3 Membrane-based bioreactors
7.4 Microbiology
7.5 Performance of membrane bioreactors
7.5.1 Membrane-based bioreactors
7.5.2 Bioreactor operation: Influence of the operating parameters
7.6 Membrane bioreactor modeling
7.7 Applications of membrane bioreactors in biological waste-gas treatment
7.7.1 Comparison with other technologies
7.8 New applications: CO₂–NOₓ sequestration
7.8.1 NOₓ removal
7.8.2 CO₂ sequestration
7.9 Future needs
References

8 Two-Phase Partitioning Bioreactors
Hala Fam and Andrew J. Daugulis
8.1 Introduction
8.2 Features of the sequestering phase – selection criteria
8.3 Liquid two-phase partitioning bioreactors (TPPBs)
8.3.1 Performance
8.3.2 Mass transfer
8.3.3 Modeling and design elements
8.3.4 Limitations and research opportunities
8.4 Solids as the partitioning phase
8.4.1 Rationale
8.4.2 Performance
8.4.3 Mass transfer
8.4.4 Modeling and design elements
8.4.5 Limitations and research opportunities
References
## Contents

### 9 Rotating Biological Contactors
**R. Ravi, K. Sarayu, S. Sandhya and T. Swaminathan**

9.1 Introduction 207

9.1.1 Limitations of conventional gas-phase bioreactors 208

9.2 The rotating biological contactor 209

9.2.1 Modified RBCs for waste-gas treatment 210

9.3 Studies on removal of dichloromethane in modified RBCs 213

9.3.1 Comparison of different bioreactors (biofilters, biotrickling filters, and modified RBCs) 215

9.3.2 Studies on removal of benzene and xylene in modified RBCs 216

9.3.3 Microbiological studies of biofilms 217

References 219

### 10 Innovative Bioreactors and Two-Stage Systems
**Eldon R. Rene, María C. Veiga and Christian Kennes**

10.1 Introduction 221

10.2 Innovative bioreactor configurations 222

10.2.1 Planted biofilter 222

10.2.2 Rotatory-switching biofilter 223

10.2.3 Tubular biofilter 224

10.2.4 Fluidized-bed bioreactor 225

10.2.5 Airlift and bubble column bioreactors 227

10.2.6 Monolith bioreactor 229

10.2.7 Foam emulsion bioreactor 231

10.2.8 Fibrous bed bioreactor 233

10.2.9 Horizontal-flow biofilm reactor 234

10.3 Two-stage systems for waste gas treatment 235

10.3.1 Adsorption pre-treatment plus bioreactor 235

10.3.2 Bioreactor plus adsorption polishing 237

10.3.3 UV photocatalytic reactor plus bioreactor 237

10.3.4 Bioreactor plus bioreactor 240

10.4 Conclusions 242

References 243

### III BIOPROCESSES FOR SPECIFIC APPLICATIONS

### 11 Bioprocesses for the Removal of Volatile Sulfur Compounds from Gas Streams
**Albert Janssen, Pim L.F. van den Bosch, Robert C. van Leerdam, and Marco de Graaff**

11.1 Introduction 249

11.2 Toxicity of VOSCs to animals and humans 250

11.3 Biological formation of VOSCs 251

11.4 VOSC-producing and VOSC-emitting industries 252

11.4.1 VOSCs produced from biological processes 252

11.4.2 Chemical processes and industrial applications 252

11.4.3 Oil and gas 253

11.5 Microbial degradation of VOSCs 253
IV ENVIRONMENTALLY-FRIENDLY BIOENERGY

14 Biogas

Marta Ben, Christian Kennes and María C. Veiga

14.1 Introduction 321
14.2 Anaerobic digestion 321
    14.2.1 A brief history 321
    14.2.2 Overview of the anaerobic digestion process 323
14.3 Substrates 328
    14.3.1 Agricultural and farming wastes 328
    14.3.2 Industrial wastes 329
    14.3.3 Urban wastes 333
    14.3.4 Sewage sludge 333
14.4 Biogas 334
    14.4.1 Biogas composition 334
    14.4.2 Substrate influence on biogas composition 335
14.5 Bioreactors 335
    14.5.1 Batch reactors 337
    14.5.2 Continuously stirred tank reactor (CSTR) 337
    14.5.3 Continuously stirred tank reactor with solids recycle (CSTR/SR) 337
    14.5.4 Plug-flow reactor 337
    14.5.5 Upflow anaerobic sludge blanket (UASB) 337
    14.5.6 Attached film digester 338
    14.5.7 Two-phase digester 338
14.6 Environmental impact of biogas 338
14.7 Conclusions 339

References 339

15 Biohydrogen

Bikram K. Nayak, Soumya Pandit and Debabrata Das

15.1 Introduction 345
    15.1.1 Current status of hydrogen production and present use of hydrogen 346
    15.1.2 Biohydrogen from biomass: present status 346
15.2 Environmental impacts of biohydrogen production 346
    15.2.1 Air pollution due to conventional hydrocarbon-based fuel combustion 346
    15.2.2 Biohydrogen, a zero-carbon fuel as a potential alternative 348
15.3 Properties and production of hydrogen 348
    15.3.1 Properties of zero-carbon fuel 348
    15.3.2 Biohydrogen production processes 350
15.4 Potential applications of hydrogen as a zero-carbon fuel 363
    15.4.1 Transport sector 363
    15.4.2 Fuel cells 366
17.7.1 Current state 418
17.7.2 Future perspectives 418
Acknowledgements 420
References 420

18 Bioethanol
Johan W. van Groenestijn, Haris N. Abubackar, Maria C. Veiga and Christian Kennes
18.1 Introduction 431
18.2 Fermentation of lignocellulosic saccharides to ethanol 432
  18.2.1 Raw materials 432
  18.2.2 Pretreatment 434
  18.2.3 Production of inhibitors 439
  18.2.4 Hydrolysis 439
  18.2.5 Fermentation 440
18.3 Syngas conversion to ethanol – biological route 441
  18.3.1 Sources of carbon monoxide 441
  18.3.2 The Wood–Ljungdahl pathway involved in the bioconversion of carbon monoxide 445
  18.3.3 Parameters affecting the bioconversion of carbon monoxide to ethanol 446
18.4 Demonstration projects 450
18.5 Comparison of conventional fuels and bioethanol (corn, cellulosic, syngas) on air pollution 451
18.6 Key problems and future research needs 455
18.7 Conclusions 456
Acknowledgements 456
References 456

V CASE STUDIES

19 Biotrickling Filtration of Waste Gases from the Viscose Industry
Andreas Willers, Christian Dressler and Christian Kennes
19.1 The waste-gas situation in the viscose industry 467
  19.1.1 The viscose process 467
  19.1.2 Overview of emission points 468
  19.1.3 Technical solutions to treat the emissions 469
  19.1.4 Potential to use biotrickling filters in the viscose industry 470
19.2 Biological CS₂ and H₂S oxidation 471
19.3 Case study of biological waste-gas treatment in the casing industry 472
  19.3.1 Products from viscose 472
  19.3.2 Process flowsheet of fibre-reinforced cellulose casing (FRCC) 473
  19.3.3 Alternatives for biotrickling filter configurations 473
  19.3.4 Characteristics of the CaseTech plant 475
  19.3.5 Description of the BioGat installation 475
  19.3.6 Performance of the BioGat process 475
20 Biotrickling Filters for Removal of Volatile Organic Compounds from Air in the Coating Sector

Carlos Lafita, F. Javier Álvarez-Hornos, Carmen Gabaldón, Vicente Martínez-Soria and Josep-Manuel Penya-Roja

20.1 Introduction

20.2 Case study 1: VOC removal in a furniture facility

20.3 Case study 2: VOC removal in a plastic coating facility

21 Industrial Bioscrubbers for the Food and Waste Industries

Pierre Le Cloirec and Philippe Humeau

21.1 Introduction

21.2 Food industry emissions

21.3 Bioscrubbing treatment of gaseous emissions from waste composting

22 Desulfurization of biogas in biotrickling filters

David Gabriel, Marc A. Deshusses and Xavier Gamisans

22.1 Introduction

22.2 Microbiology and stoichiometry of sulfide oxidation

22.3 Case study background and description of biotrickling filter
23 Full-Scale Biogas Upgrading

Jort Langerak, Robert Lems and Erwin H.M. Dirkse

23.1 Introduction

23.2 Case 1: Zalaegerszeg, PWS system with car fuelling station
  23.2.1 Biogas composition and biomethane requirements at Zalaegerszeg
  23.2.2 Plant configuration at Zalaegerszeg

23.3 Case 2: Zwolle, PWS system with gas grid injection
  23.3.1 Biogas composition and biomethane requirements at Zwolle
  23.3.2 Plant configuration at Zwolle

23.4 Case 3: Wijster, PWS system with gas grid injection
  23.4.1 Biogas composition and biomethane requirements at Wijster
  23.4.2 Plant configuration at Wijster

23.5 Case 4: Poundbury, MS system with gas grid injection
  23.5.1 Biogas composition and biomethane requirements at Poundbury
  23.5.2 Plant configuration at Poundbury

23.6 Configuration overview and evaluation

23.7 Capital and operational expenses
  23.7.1 Zalaegerszeg
  23.7.2 Zwolle
  23.7.3 Wijster
  23.7.4 Poundbury
  23.7.5 Overview table of capital and operating expenses

23.8 Conclusions

References