Mass Transport of Nanocarriers

edited by
Rita Elena Serda
Contents

Preface xvii

Part 1 Overview 1

1. Mass Transport: Barriers and Opportunities for Drug Delivery 3
Rita E. Serda
1.1 Introduction 4
1.2 Macro Barriers: Journey to the Tumor 4
1.2.1 Endothelial Barriers 4
1.2.2 Epithelial Barriers 7
1.2.3 Mucosal Barriers 10
1.2.4 Cell-Based Transport Across Barriers 10
1.3 The Tumor Microenvironment 12
1.3.1 Vasculature 12
1.3.2 Lymphatic Drainage 13
1.3.3 Viscoelasticity 14
1.4 Cellular Barriers 15
1.4.1 Endocytosis 15
1.4.2 Intracellular Trafficking of Nanoparticles 16
1.4.3 Cellular Targeting 17
1.4.4 Tools for Cellular Imaging 17
1.5 Novel Design Approaches 19
1.6 Summary 20

Part 2 Macro Barriers: Journey to the Tumor 25

2. Biological Barriers: Targeting and Crossing the Endothelium 27
Silvia Ferrati, Brenda Melendez, and Aaron Mack
2.1 Introduction 27
2.2 Biological Barriers to Transport 28
2.2.1 Barriers at the Systems Level 28
4. Mucosal Barriers to Drug- and Gene-Loaded Nanoparticles

Myung Soo Kim, Ying-Ying Wang, and Samuel K. Lai

4.1 Introduction

4.2 Need for Engineering Nanoparticles That Overcome the Mucus Barrier
 4.2.1 Fate of Conventional, Mucoadhesive Nanoparticles

4.3 Composition of Mucus
 4.3.1 Mucins
 4.3.2 DNA
 4.3.3 Lipids
 4.3.4 Salts
 4.3.5 Proteins
 4.3.6 Cells and Cellular Debris

4.4 Properties of the Mucus Barrier
 4.4.1 Luminal vs. Adherent Mucus Layers
 4.4.2 Thickness of Mucus Layers and Turnover Rate

4.5 Diffusional Barrier Properties of Mucus
 4.5.1 Understanding Particle Diffusion in Mucus: Macrorheology vs. Microrheology
 4.5.2 Microstructure of Mucus
 4.5.3 Adhesive Trapping of Particles

4.6 Engineering Mucus-Penetrating Particles
 4.6.1 Understanding Physiochemical Properties Necessary for MPP
 4.6.2 Learning from Viruses
 4.6.3 PEGylation
 4.6.4 Size
 4.6.5 Other Methods to Improve Mucosal Delivery
3.3.4 Stroma-Derived Factors

3.4 Conclusions

4. Mucosal Barriers to Drug- and Gene-Loaded Nanoparticles

Myung Soo Kim, Ying-Ying Wang, and Samuel K. Lai

4.1 Introduction

4.2 Need for Engineering Nanoparticles That Overcome the Mucus Barrier

4.2.1 Fate of Conventional, Mucoadhesive Nanoparticles

4.2.1.1 Sustained and targeted drug delivery using mucus-penetrating particles

4.3 Composition of Mucus

4.3.1 Mucins

4.3.2 DNA

4.3.3 Lipids

4.3.4 Salts

4.3.5 Proteins

4.3.6 Cells and Cellular Debris

4.4 Properties of the Mucus Barrier

4.4.1 Luminal vs. Adherent Mucus Layers

4.4.2 Thickness of Mucus Layers and Turnover Rate

4.5 Diffusional Barrier Properties of Mucus

4.5.1 Understanding Particle Diffusion in Mucus: Macrorheology vs. Microrheology

4.5.2 Microstructure of Mucus

4.5.3 Adhesive Trapping of Particles

4.6 Engineering Mucus-Penetrating Particles

4.6.1 Understanding Physiochemical Properties Necessary for MPP

4.6.2 Learning from Viruses

4.6.3 PEGylation

4.6.4 Size

4.6.5 Other Methods to Improve Mucosal Delivery
Part 3 The Tumor Microenvironment

5. Modeling the Tumor Microenvironment as a Biobarrier in Cancer Nanotherapeutics

Hermann B. Frieboes, Kenji Yokoi, Bhuvanesh Dave, Fazle Hussain, and Biana Godin

5.1 Introduction

5.1.1 Multi-Scale Biobars

5.1.2 Effect of Tumor Microenvironment on Therapeutic Outcome

5.2 Modeling the Tumor Microenvironment

5.2.1 Effect of Tumor Microenvironment on Cancer Cell Survival

5.2.2 In silico Modeling of the Tumor Microenvironment

5.2.3 Discrete, Continuum, and Hybrid Models of the Tumor Microenvironment

5.2.4 Modeling of Therapy to Overcome Sub-Optimal Delivery of Agents in the Tumor Microenvironment

5.2.5 Cancer Nanotherapeutics: Design Considerations

5.3 Nanovectors and Tumor Biobars

5.3.1 Physiology of Tumor Vasculature

5.3.2 Passive Accumulation vs. Molecular Targeting in Delivery of Nanotherapeutics: A Posse Ad Esse

5.3.3 Gradients in Tumor Tissue

5.3.4 Effect of Angiogenic Blood Vessels on Transport of Nanotherapeutics

5.3.4.1 Vascular topology

5.3.4.2 Hemodynamics

5.3.4.3 Vascular diffusivity

5.3.5 Drug Release from a Nanovector

5.4 Modeling Tumor Growth and Shrinkage in Response to Therapy

5.4.1 Modeling Tumor Growth

5.4.2 Modeling Therapeutic Response

5.4.2.1 Pharmacokinetic parameters

5.4.2.2 Pharmacodynamic parameters
5.5 Computational Simulations of Therapeutic Response

5.5.1 Description of Simulations

5.5.1.1 General considerations in simulating therapeutic response

5.5.1.2 Simulation of DNA-bound drug distribution

5.5.2 Effect of Heterogeneity in Drug and Cell Nutrients

5.5.3 Simulating the Tumor Response to Therapeutic Nanovectors

5.6 Conclusions and Future Considerations

6. Tumor Microenvironment

Christopher H. Loo

6.1 Introduction

6.2 Vasculature

6.2.1 Vascular Endothelial Growth Factor

6.2.2 VEGF and Associated Receptors

6.2.3 Vessel Permeability

6.2.4 Endothelial Cell Activation

6.2.5 Proliferation

6.2.6 Invasion and Migration

6.2.7 Survival

6.2.8 Recruitment of Endothelial Cell Progenitors

6.2.9 Vasculogenic Mimicry, Oncogene Addiction, and the Angiogenic Switch

6.2.9.1 Vasculogenic mimicry

6.2.9.2 Oncogene addiction

6.2.9.3 Angiogenic switch

6.2.10 Clinical Applicability

6.2.11 Multiple Molecular Targets Required

6.3 Hypoxia

6.3.1 Biochemistry of Hypoxia-Inducible Factor

6.3.2 HIF Activation

6.3.3 Biochemistry of HIF Activation

6.3.4 Tumor Angiogenesis
6.3.5 Cell Survival and/or Death 198
6.3.6 Metabolism 200
6.3.7 Regulation of pH 201
6.3.8 Metastasis 202
6.3.9 Hypoxia, Oncogenes, and Tumor Suppressor Genes 202
6.3.10 Hypoxia, HIF, and Therapeutics 203
6.4 Pericytes 203
 6.4.1 Pericyte Involvement in Tumor Angiogenesis and Metastasis 204
 6.4.2 Pericyte-Mediated Vessel Destabilization 204
 6.4.3 Endothelial Cell Growth 204
 6.4.4 Ang2/Tie Signaling 206
 6.4.5 Targeting Stromal Cells as Molecular Targets in Models Against Cancer (Pancreatic, Colon, and Lung) 208
 6.4.5.1 Pancreatic cancer 208
 6.4.5.2 Colon cancer 209
 6.4.5.3 Lung cancer 210
6.5 Conclusions 210

Part 4 Cellular Barriers 221

7. Imaging Tools for Cellular Uptake and Intracellular Trafficking 223

Jared Burks
7.1 Objectives 224
7.2 Illumination 228
7.3 Detectors (CCD Cameras and Photomultiplier Tube) 229
7.4 Filters 230
7.5 Automated Stages 230
7.6 The Microscope 231
7.7 Live Cell Imaging 232
 7.7.1 Phototoxicity and Photostability 234
7.8 Fluorescent Probes 235
7.9 Fluorescent Proteins 235
7.10 Quantum Dots 236
7.11 Dyes 237
8. Endocytosis

Natalie Sirisaengtaksin, Brandon S. Brown, and Andrew J. Bean

8.1 Clathrin-Mediated Endocytosis
 8.1.1 Clathrin and Clathrin-Coated Vesicles
 8.1.2 Receptor-Mediated Endocytosis
 8.1.3 Pinocytosis
8.2 Caveolin-Mediated Endocytosis
 8.2.1 Caveolae Formation
8.3 Actin-Mediated Endocytic Pathways: Macropinocytosis and Phagocytosis
 8.3.1 Macropinocytosis
 8.3.1.1 Induction of macropinocytosis
 8.3.2 Phagocytosis
 8.3.2.1 Particle recognition, adhesion, and phagosome formation
 8.3.2.2 Phagosomal maturation
8.4 Nanoparticle Internalization
8.5 Early Endosome-Late Endosome Maturation
8.6 Mechanisms of Protein Sorting at the Late Endosome
8.7 Role of Ubiquitination in Late Endocytic Protein Sorting
8.8 Multivesicular Body Fusion with Lysosomes
8.9 Autophagy and the Endolysosomal System
8.10 Lysosomes
8.11 Secretion from Endosomal Organelles
8.12 Exosome Release from MVBs
8.13 Nanoparticle Trafficking in the Endo-Lysosomal System

9. Cellular Barriers to Delivery

Christopher Dempsey, Elizabeth Carstens, Feiran Huang, and Junghae Suh

9.1 Introduction
9.2 Entrapment in Endolysosomal Pathway
 9.2.1 pH-Sensitive Fusion
 9.2.2 pH-Buffering Disruption
 9.2.3 Peptide- and Polymer-Mediated Disruption
10.3 Nanovectors-Modification Techniques for Targeting Cell Membrane Receptors 310
10.3.1 Aptamers 311
10.3.2 Proteins 313
10.3.3 Peptides 315
10.3.4 Other Ligands 315

10.4 Cell Membrane Targeted Nanocarriers for Advanced Diagnostics and Therapeutics 318
10.4.1 Cancer 319
10.4.2 Cardiovascular Diseases 326
10.4.3 Targeted Nanovectors in Endocrine and Metabolic Disorders 330
10.4.4 Neural Diseases 331
10.4.5 Infections and Inflammation 331

10.5 Effect of Carrier Geometry on Cell Surface Receptor Binding and Cellular Uptake 334

10.6 Conclusions 337

Part 5 Novel Design Approaches 361

11. The Fabrication and Mass Transport of Polymer Nanocarriers 363
Litao Bai, Jason Sakamoto, and Haifa Shen

11.1 Introduction 363
11.2 Polymeric Nanoparticles as Nanocarriers 366
11.2.1 Preparation of Polymeric Nanoparticles 367
11.2.1.1 Preparation of polymer nanoparticles by solvent evaporation 367
11.2.1.2 Preparation of polymer nanoparticles by salting out 369
11.2.1.3 Preparation of polymer nanoparticles by solvent displacement/diffusion method 369
11.2.1.4 Preparation of polymer nanoparticles by supercritical fluid 370
11.2.1.5 Preparation of polymer nanoparticles by polymerization method 371
11.2.2 Drug Loading with Polymer Nanoparticles 371
11.2.3 Drug Release from Polymer Nanoparticles 372
11.3 Polymer–Drug Conjugates 372
11.3.1 HPMA Copolymer–Drug Conjugates 374
11.3.2 Polyglutamic Acid–Drug Conjugates 375
11.3.3 Dextran–Drug Conjugates 375
11.3.4 PEG–Drug Conjugates 376
11.4 Polymeric Micelles as Nanocarriers 377
11.4.1 Introduction 377
11.4.2 Preparation and Drug Loading of Polymeric Micelles 379
11.4.3 Drug Release from Polymeric Micelles 381
11.5 Dendrimer Nanocarriers 383
11.5.1 Introduction 383
11.5.2 Loading of Dendrimers by Physical Encapsulation 385
11.5.3 Loading of Dendrimers by Chemical Conjugation 387
11.5.4 Fabrication of Multifunctional Dendrimer Conjugations 388
11.6 Conclusion and Prospects 388

12. Morphology Control of Nanotextured Drug Carriers 409

Ye Hu and Kevin Lin
12.1 Introduction 409
12.2 Porous Silicon Microparticles for Drug Delivery 412
12.2.1 Synthesis of Porous Silicon 412
12.2.2 Vascular Targeting and Margination 413
12.2.3 Biodistribution 416
12.3 Spherical Silica Particles for Drug Delivery 417
12.3.1 Methods for Particle Synthesis 418
12.3.1.1 Synthesis of M41S-based delivery particles 418
12.3.1.2 Synthesis of SBA-15-based delivery particles 419
12.3.1.3 Synthesis of porous hollow nanoparticles 420
12.3.2 Effect of Mesostructure on Drug Delivery 421
 12.3.2.1 Effect of size 421
 12.3.2.2 Surface area and pore volume/geometry 422
 12.3.2.3 Functionalization 422
12.3.3 Stimuli-Modulated Release 424

Index 431