Contents

Part I From Grain Boundary Order to Disorder

1 Geometrical Order of Grain Boundaries .. 3
1.1 Grain Boundary Geometry ... 3
1.1.1 Crystallographical Parameters ... 4
1.1.2 Equivalent Rotations: Disorientation ... 6
1.1.3 Rodrigues Vector and Quaternions ... 7
1.2 Bicrystallography .. 8
1.2.1 General Methodology: From the Dichromatic Complex to the Grain Boundary ... 9
1.2.2 Dichromatic Pattern: Coincidence Site Lattice (CSL) ... 12
1.2.3 Translation Lattice of the Bicrystal (DSC Lattice) 14
1.2.4 Extension of the Coincidence Notion ... 16
1.2.5 Generalization of the Coincidence: O-Lattice and O₂-Lattice 20
1.2.6 Interest and Limit of the Bollmann Approach 22
1.3 Different Types of Grain Boundaries: Terminology 23
1.3.1 Terminology Based on the Macroscopic Parameters 23
1.3.2 Terminology Based on the Microscopic Parameters 25
1.3.3 Practical Distinction Between Grain Boundaries 25
References ... 27

2 Mechanical Stress Order of Grain Boundaries 29
2.1 Continuous Approach: The Frank-Bilby Equation 29
2.2 Discrete Approach: The Read and Shockley Model 32
2.3 Bollmann’s Discrete Approach: Intrinsic Dislocations 33
2.3.1 Primary Intrinsic Dislocations ... 33
2.3.2 Secondary Intrinsic Dislocation ... 37
3 Atomic Order of Grain Boundaries

3.1 Hard Sphere Model: Geometrical Construction

3.2 Structural Unit Model

3.2.1 Principle

3.2.2 Hierarchy of the Descriptions

3.2.3 Multiplicity of the Descriptions

3.2.4 Geometrical Construction of the Grain Boundary Structure

3.2.5 Algorithm for the Determination of the Grain Boundary Structure

3.2.6 Determination of the Grain Boundary Structure by the Strip Method

3.3 Interests and Limits of the Structural Unit Model: Any Model has its Exceptions

3.3.1 Three-Dimensional Tilt Grain Boundaries in Metals

3.3.2 Asymmetrical Tilt Grain Boundaries in Metals

3.3.3 Twist Grain Boundaries in Metals

3.3.4 Grain Boundaries in Covalent Materials

3.3.5 Grain Boundaries in Ionic Materials

3.4 Structural Unit Model/Intrinsic Grain Boundary Dislocations

3.4.1 Principle of the SU/GBD Model

3.4.2 Characterization of the Dislocations Associated to Structural Units

3.4.3 Application of the SU/GBD Model to Tilt Grain Boundaries

3.4.4 Limits of the SU/GBD Model for the Twist Grain Boundaries

3.5 Structural Unit/Disclination Model

4 Grain Boundary Order/Disorder and Energy

4.1 Grain Boundary Order or Disorder at High Temperature?

4.1.1 Solid/Solid Phase Transformations at Grain Boundaries

4.1.2 Grain Boundary Pre-melting?
4.2 Interfacial Energy: Thermodynamic Aspects
and Energy Factors .. 99
4.3 Macroscopic Degrees of Freedom and Interfacial Energy 100
 4.3.1 Variation of the Interfacial Energy
 with the Misorientation Angle 101
 4.3.2 Variation of the Interfacial Energy with the
 Grain Boundary Plane Inclination 106
4.4 Microscopic Degrees of Freedom and Interfacial Energy 113
 4.4.1 Variation of the Interfacial Energy with the
 in Plane Rigid Body Translation 113
 4.4.2 Variation of the Interfacial Energy with the
 Expansion Normal to the Grain Boundary Plane 115
 4.4.3 Variation of the Interfacial Energy
 with Local Individual Atomic Relaxations 117
4.5 Are There any Geometrical Criteria of Minimum Energy? 117
 4.5.1 Low Sigma Value Criterion 118
 4.5.2 High Gamma Value Criterion 119
 4.5.3 High d Value Criterion 120
 4.5.4 High Gamma Value with Constant d Criterion 120
4.6 Energy and Classification of Grain Boundaries: The Limits 122
 4.6.1 Classification Directly Based
 on the Grain Boundary Energy 122
 4.6.2 Classification Based on the Grain Boundary
 Interplanar Spacing 123
4.7 Grain Boundary Order or Disorder: What Conclusion? 127
References .. 132

Part II From Ideal to Real Grain Boundary

5 Defects in the Grain Boundary Structure 135
 5.1 Point Defects .. 135
 5.2 Linear Defects: Extrinsic Dislocations 138
 5.2.1 Definition of an Extrinsic Dislocation 138
 5.2.2 Geometrical Characteristics of an Extrinsic
 Dislocation .. 140
 5.2.3 Origin of an Extrinsic Dislocation 142
 5.2.4 Extrinsic Dislocation Core 142
References .. 146

6 Grain Boundary Segregation .. 147
 6.1 Driving Forces Equilibrium Segregation 148
 6.1.1 Elastic Interactions 149
 6.1.2 Electronic Effects 151
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Thermodynamic Approaches of Equilibrium Segregation</td>
<td>151</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Gibbs Adsorption Isotherm</td>
<td>152</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Segregation in Regular Solid Solution</td>
<td>153</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Segregation in Regular Solid Solution with Interactions</td>
<td>156</td>
</tr>
<tr>
<td>6.3</td>
<td>Segregation Models Based on the Statistical Mechanics</td>
<td>159</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Model of Regular Solid Solution with the Bragg-Williams Approximation</td>
<td>160</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Mean Field Approximation (MFA) Models</td>
<td>161</td>
</tr>
<tr>
<td>6.4</td>
<td>Average Segregation at Grain Boundaries</td>
<td>162</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Dependence of the Average Grain Boundary Segregation on the Temperature and the Solute Concentration</td>
<td>162</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Influence of the Interaction Term on the Average Segregation</td>
<td>163</td>
</tr>
<tr>
<td>6.5</td>
<td>Relation Between Segregation and Grain Boundary Structure</td>
<td>165</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Segregation and Grain Boundary Geometrical Parameters</td>
<td>166</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Grain Boundary Segregation and Intrinsic Dislocations</td>
<td>177</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Grain Boundary Segregation and Grain Boundary Atomic Structure</td>
<td>182</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Grain Boundary Segregation and Grain Boundary Electronic Structure</td>
<td>192</td>
</tr>
<tr>
<td>6.6</td>
<td>Prewetting Transition Upon Segregation at Grain Boundaries</td>
<td>200</td>
</tr>
<tr>
<td>6.7</td>
<td>Concept of Complexions</td>
<td>203</td>
</tr>
<tr>
<td>6.8</td>
<td>Role of Extrinsic Dislocations in Grain Boundary Equilibrium Segregation</td>
<td>205</td>
</tr>
<tr>
<td>6.9</td>
<td>Non-equilibrium Segregation at Grain Boundaries</td>
<td>207</td>
</tr>
<tr>
<td>6.10</td>
<td>Concluding Remarks</td>
<td>213</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>213</td>
</tr>
</tbody>
</table>

7	Precipitation at Grain Boundaries	217
7.1	Energetic Aspect	218
7.2	Different Types of Interfaces and Precipitates	220
7.2.1	Coherent Interface	220
7.2.2	Semicohescent Interface	222
7.2.3	Incoherent Interface	223
7.2.4	Different Types of Precipitates	223
7.3 Generalised Wulff Construction for Nucleus Equilibrium at Grain Boundary .. 224
 7.3.1 Equilibrium Condition for a Nucleus at a Grain Boundary .. 224
 7.3.2 Principle of the Generalised Wulff Construction ... 226
 7.3.3 Equilibrium Shape of Two-Dimensional Nuclei at Grain Boundaries 227
 7.3.4 Influence on the Grain Boundary Plane on the Nucleus Shape .. 232
 7.3.5 Equilibrium Shape of Three-Dimensional Nuclei at Grain Boundaries 233
 7.3.6 Grain Boundary Puckering Phenomenon .. 234
7.4 Grain Boundary Precipitate Growth ... 235
 7.4.1 Migration of a Curved Incoherent Interface ... 236
 7.4.2 Migration of a Planar Interface (Coherent or Semicoherent) ... 236
7.5 Localisation of Grain Boundary Precipitates on Extraneous Dislocations 237
References ... 240

8 Interactions Between Dislocations and Grain Boundaries ... 241
 8.1 Long-Range Elastic Interaction: Image Force .. 242
 8.2 Dislocation Configurations in the Vicinity of a Grain Boundary .. 246
 8.3 Short-Range Interactions Between Linear and Planar Defects ... 248
 8.3.1 Combination Processes ... 249
 8.3.2 Decomposition Processes .. 250
 8.3.3 Transmission Processes .. 254
 8.3.4 Entrance of a Dissociated Dislocation in a Grain Boundary ... 257
 8.3.5 Simulation of the Interaction of a Lattice Dislocation with a Grain Boundary 261
References ... 266

9 Intergranular Stress Relaxation .. 269
 9.1 Extrinsic Dislocation Accommodation Models ... 270
 9.1.1 Extrinsic Dislocation Core Delocalisation ... 270
 9.1.2 Extrinsic Dislocation Decomposition and Product Reorganisation .. 272
 9.1.3 Extrinsic Dislocation Incorporation Within the Intrinsic Structure 274
9.2 Evolution of Extrinsic Dislocation Stress Fields .. 277
9.2.1 Random Disordered Dislocation Wall Model .. 277
9.2.2 Quasi-Equidistant Grain Boundary Model .. 279
9.3 Evolution of Extrinsic Dislocation Stress Fields with Time 282
9.4 Experimental Studies of Extrinsic Dislocation Accommodation 284
 9.4.1 Accommodation in Symmetrical Tilt Grain Boundaries in Semiconductors 284
9.4.2 Accommodation in Singular, Vicinal and General Grain Boundaries in Metals 286
9.4.3 Accommodation Kinetics ... 297
9.5 Conclusion on the Extrinsic Dislocation Relaxation Phenomena 300
References ... 300

Part III From the Free to the Constrained Grain Boundary

10 The Triple Junction ... 305
 10.1 Triple Junction Geometry .. 305
 10.1.1 Geometrical Parameters and Triple Junction Classification. 305
 10.1.2 Tricrystallography ... 307
 10.2 Triple Junction Equilibrium .. 310
 10.2.1 Thermodynamic Approach: Limits ... 311
 10.2.2 Equilibrium in Terms of Intrinsic Dislocations 317
 10.2.3 Equilibrium in Terms of Structural Units 319
 10.3 Triple Junction Energy ... 322
 10.3.1 Calculation of the Triple Junction Energy 322
 10.3.2 Experimental Determination of the Triple Junction Energy 325
 10.4 Triple Junction Defects .. 326
 10.4.1 Intrinsic Defects of a Triple Junction: Geometrical Approach 327
 10.4.2 Extrinsic Defects of a Triple Junction: Mechanical Approach 330
 10.5 From Tricrystal to Polycrystal ... 333
References ... 336

11 Grain Boundary Network: Grain Boundary Texture 337
 11.1 Criteria for Grain Boundary Distribution ... 339
 11.1.1 Misorientation Criterion .. 340
 11.1.2 Grain Boundary Plane Criterion ... 341
 11.1.3 Non Geometrical Criteria .. 343
 11.2 Calculation of the Misorientation Distribution 344