Fluidized bed technologies for near-zero emission combustion and gasification

Edited by
Fabrizio Scala

© Woodhead Publishing Limited, 2013
Contents

Contributor contact details xv
Woodhead Publishing Series in Energy xxi
Preface xxvii

Part I Introduction to fluidization science and technology 1

1 Overview of fluidization science and fluidized bed technologies 3
 M. Horio, Tokyo University of Agriculture and Technology, Japan
 1.1 Introduction 3
 1.2 Fluidization as a fundamental phenomenon and its formulation 8
 1.3 Historical development of fluidization technology 16
 1.4 Historical development of fluidization science 24
 1.5 Conclusion and future trends 36
 1.6 Acknowledgements 36
 1.7 References 36
 1.8 Appendix: notation 40

2 Particle characterization and behavior relevant to fluidized bed combustion and gasification systems 42
 D. Wang and L.-S. Fan, The Ohio State University, USA
 2.1 Introduction 42
 2.2 Characterization of particles 43
 2.3 Fluid–particle interactions 55
 2.4 Particle–particle interactions 60
 2.5 Particle fluidization characteristics 67
 2.6 Particle property effects in a novel combustion system 71
 2.7 Conclusion 72
 2.8 Sources of further information and advice 72
 2.9 References 73
6 Attrition phenomena relevant to fluidized bed combustion and gasification systems 254
F. Scala and R. Chirone, National Research Council, Italy and P. Salatino, University of Naples ‘Federico II’, Italy

6.1 Introduction 254
6.2 Attrition mechanisms in fluidized beds 256
6.3 Attrition of solid fuels during conversion 267
6.4 Attrition of sorbent particles 274
6.5 Attrition of other bed solids 284
6.6 Attrition models 288
6.7 Incorporation of attrition in fluidized bed models 294
6.8 Conclusion 298
6.9 References 300
6.10 Appendix: notation 314

Part II Fundamentals of fluidized bed combustion and gasification 317

7 Conversion of solid fuels and sorbents in fluidized bed combustion and gasification 319
F. Scala and R. Solimene, National Research Council, Italy and F. Montagnaro, University of Naples ‘Federico II’, Italy

7.1 Introduction 319
7.2 Solid fuel properties in fluidized beds 320
7.3 Fuel devolatilization and conversion of volatiles 325
7.4 Char combustion and gasification reactions 335
7.5 Mechanisms controlling char conversion rate 337
7.6 Char particle temperature 349
7.7 Calcium-based sorbents for in-situ desulphurization (ISD) 352
7.8 Reactivation by hydration of spent calcium-based sorbents 359
7.9 Other sorbent conversion processes in fluidized beds 364
7.10 Conclusion 367
7.11 Acknowledgment 368
7.12 References 368
7.13 Appendix: notation 386

8 Conversion of liquid and gaseous fuels in fluidized bed combustion and gasification 388
M. Miccio, Università di Salerno, Italy and F. Miccio, Istituto di Ricerche sulla Combustione, Italy

8.1 Introduction 388
8.2 Fuels 389
Contents

8.3 Fuel feeding 393
8.4 Fluidized bed combustion (FBC) of gaseous fuels 397
8.5 FBC of liquid fuels 403
8.6 Emissions 409
8.7 Combustion mechanism of liquid fuels 415
8.8 Conclusion and future trends 426
8.9 Acknowledgments 430
8.10 References 430
8.11 Appendix: nomenclature 433

9 Pollutant emissions and their control in fluidised bed combustion and gasification 435
I. Gulyurtlu, F. Pinto, P. Abelha, H. Lopes and A. T. Crujeira, LNEG, Portugal

9.1 Introduction 435
9.2 Emissions from fluidised bed combustion (FBC) processes 436
9.3 Methods for controlling emissions during combustion and post-combustion 445
9.4 Emissions from fluidised bed gasification processes 456
9.5 Control of emissions during gasification and post-gasification 460
9.6 Deposition and environmental issues associated with residual ash 466
9.7 Future trends 470
9.8 References and further reading 472

10 Fluidized bed reactor design and scale-up 481
T. M. Knowlton, Particulate Solid Research Inc., USA

10.1 Introduction 481
10.2 General scale-up procedure 487
10.3 Selecting mathematical models and fluidization regimes for bubbling and turbulent fluidized beds 488
10.4 Selecting mathematical models and fluidization regimes for circulating fluidized beds 495
10.5 Constructing pilot, demonstration and commercial plants 505
10.6 Circulating fluidized bed combustor scale-up and other considerations 508
10.7 Conclusion 517
10.8 References 518
10.9 Appendix: notation 521

© Woodhead Publishing Limited, 2013
Part III Fluidized bed combustion and gasification technologies

14 Atmospheric (non-circulating) fluidized bed (FB) combustion

B. Leckner, Chalmers University of Technology, Sweden

14.1 Introduction

© Woodhead Publishing Limited, 2013
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6</td>
<td>Sources of further information and advice</td>
<td>806</td>
</tr>
<tr>
<td>17.7</td>
<td>References</td>
<td>806</td>
</tr>
<tr>
<td>18</td>
<td>Measurement, monitoring and control of fluidized bed combustion and gasification</td>
<td>813</td>
</tr>
<tr>
<td></td>
<td>M. Rödisli, T. J. Schildhauer and S. M. A. Biollaz, Paul Scherrer Institut (PSI), Switzerland and J. R. Van Ommen, Delft University of Technology, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>813</td>
</tr>
<tr>
<td>18.2</td>
<td>Measurement techniques</td>
<td>814</td>
</tr>
<tr>
<td>18.3</td>
<td>Physical properties of pressure fluctuations in fluidized beds</td>
<td>823</td>
</tr>
<tr>
<td>18.4</td>
<td>Time series analysis of pressure fluctuations in fluidized beds</td>
<td>828</td>
</tr>
<tr>
<td>18.5</td>
<td>Industrial application of monitoring and measurement techniques</td>
<td>848</td>
</tr>
<tr>
<td>18.6</td>
<td>Conclusion</td>
<td>852</td>
</tr>
<tr>
<td>18.7</td>
<td>References</td>
<td>854</td>
</tr>
<tr>
<td></td>
<td>Part IV Emerging CO₂ capture technologies</td>
<td>865</td>
</tr>
<tr>
<td>19</td>
<td>Oxy-fired fluidized bed combustion: technology, prospects and new developments</td>
<td>867</td>
</tr>
<tr>
<td></td>
<td>E. J. Anthony, Cranfield University, UK and H. Hack, Foster Wheeler North America Corp., USA</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>867</td>
</tr>
<tr>
<td>19.2</td>
<td>Oxy-fired circulating fluidized bed combustion (CFBC): research and development</td>
<td>872</td>
</tr>
<tr>
<td>19.3</td>
<td>Gas/solid emissions</td>
<td>876</td>
</tr>
<tr>
<td>19.4</td>
<td>Modelling, hydrodynamics and related issues</td>
<td>884</td>
</tr>
<tr>
<td>19.5</td>
<td>Larger-scale tests and industrial plans</td>
<td>885</td>
</tr>
<tr>
<td>19.6</td>
<td>Flue gas issues and conditioning for oxy-fuel technology</td>
<td>887</td>
</tr>
<tr>
<td>19.7</td>
<td>Conclusion</td>
<td>888</td>
</tr>
<tr>
<td>19.8</td>
<td>Acknowledgements</td>
<td>889</td>
</tr>
<tr>
<td>19.9</td>
<td>References</td>
<td>889</td>
</tr>
<tr>
<td>20</td>
<td>Chemical looping combustion (CLC)</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>A. Lyngfelt, Chalmers University of Technology, Sweden</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>895</td>
</tr>
<tr>
<td>20.2</td>
<td>Basic principles of chemical looping combustion (CLC)</td>
<td>896</td>
</tr>
<tr>
<td>20.3</td>
<td>Applications of CLC</td>
<td>898</td>
</tr>
<tr>
<td>20.4</td>
<td>Oxygen carrier materials</td>
<td>904</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2013
Contents

20.5 Chemical looping with oxygen uncoupling (CLOU) 909
20.6 Development of fluidized bed reactor system for CLC 910
20.7 Advantages and limitations of CLC 917
20.8 Future trends 918
20.9 Conclusion 919
20.10 Sources of further information and advice 920
20.11 References 921

21 Calcium looping for CO₂ capture in combustion systems 931
J. C. Abanades, Spanish Research Council (CSIC), Spain
21.1 Introduction 931
21.2 Basic principles 932
21.3 Development of calcium looping (CaL) fluidized bed processes 942
21.4 Application of CaL at pilot scale 951
21.5 Advantages and limitations 957
21.6 Conclusion 962
21.7 Sources of further information and advice 962
21.8 References 963
21.9 Appendix: notation 970

22 Sorption-enhanced gasification 971
C. Pfeifer, University of Natural Resources and Life Sciences, Vienna, Austria, formerly Vienna University of Technology, Austria
22.1 Introduction 971
22.2 Fundamentals of sorption-enhanced gasification 973
22.3 Thermodynamics of sorption-enhanced gasification 979
22.4 Limitations 980
22.5 Literature review about research and commercial examples: experiments on a laboratory scale (<100 kWth) 983
22.6 Literature review about research and commercial examples: experiments on a pilot scale (≥100 kWth) 987
22.7 Literature review about research and commercial examples: experiments on an industrial scale 992
22.8 Conclusion 996
22.9 Sources of further information and advice 997
22.10 References 997