AGING POWER DELIVERY INFRASTRUCTURES

Second Edition

H. Lee Willis
Randall R. Schrieber

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the Taylor & Francis Group, an Informa business
Contents

Series Introduction
Preface

1 **Aging Power Delivery Infrastructures**
1.1 Introduction and Overview
1.2 Aging Infrastructure Management Must Become A Mainstream Part of Utility Operations?
1.3 What is the Infrastructure Involved?
1.4 Characteristics of an Aging Infrastructure
1.5 Power Delivery Systems
1.6 The Business Environment Has Changed
1.7 Five Factors Contribute to Aging Infrastructure Problems
1.8 Condition, Criticality, and Consequences
1.9 Concluding Remarks
References and Bibliography

2 **Power Delivery Systems**
2.1 Introduction
2.2 T&D System’s Mission
2.3 The “Laws of T&D”
2.4 Levels of the T&D System
2.5 Utility Distribution Equipment
2.6 T&D Costs
2.7 Types of Delivery System Design

iii
v
1
51
54
57
74
83

xi
2.8	Smart Grid	96
2.9	Conclusion	98
	References and Bibliography	100
3	Customer Demand for Power and Reliability of Service	103
3.1	The Two-Q's: Quantity and Quality of Power	103
3.2	Electric Consumer Need for Quantity of Power	104
3.3	Electric Consumer Need for Quality of Power	113
3.4	Two-Q Analysis: Quantity and Quality of Power Are Both Important Aspects of Consumer Value	129
3.5	Conclusion and Summary	132
	References and Bibliography	133
4	Power System Reliability and Reliability of Service	135
4.1	Introduction	135
4.2	Outages Cause Interruptions	137
4.3	Reliability Indices	141
4.4	Reliability and Contingency Criteria for Planning	146
4.5	Cost Is Usually *the* Major Consideration	151
4.6	Two-Q Analysis of Power Systems	155
4.7	Conclusion and Summary	157
	References and Bibliography	158
5	Cost and Economic Evaluation	161
5.1	Introduction	161
5.2	Costs	162
5.3	Time Value of Money	165
5.4	Decision Bases and Cost-Effectiveness Evaluation	181
5.5	Budget-Constrained Planning: Marginal Benefit vs. Cost Analysis	182
Contents

5.6 Asset Management and Pareto Analysis 195
5.7 Conclusion 200
 References and Bibliography 201

6 Equipment Inspection, Testing, and Diagnostics 203
 6.1 Introduction 203
 6.2 Inspection, Testing, and Diagnostic Evaluation 203
 6.3 Equipment Testing and Diagnosis Methods 213
 6.4 Tests and Diagnosis of Insulating Oil 221
 6.5 On-Line and Real-Time Monitoring and Testing 229
 6.5 Summary and Final Comments 231
 References 232

7 Aging Equipment and Its Impacts 233
 7.1 Introduction 233
 7.2 Equipment Aging 234
 7.3 Equipment Failure Rate Increases with Age 249
 7.4 Impact of Escalating Failure Rates 256
 7.5 Summary of Key Points 262
 References 263

8 Obsolete System Structures 265
 8.1 Introduction 265
 8.2 Obsolete Systems Layouts 266
 8.3 Impacts on the Sub-transmission – Substation Level 272
 8.4 Feeder System Impacts 278
 8.5 “Fixes” For Outdated System Structures 292
 8.6 Summary of Key Points 295
 References and Bibliography 296
9 Traditional Reliability Engineering Tools and Their Limitations 297
 9.1 Introduction 297
 9.2 Contingency-Based Planning Methods 298
 9.3 Limitations of N-1 Methodology 304
 9.4 Other Planning Related Concerns 317
 9.5 Summary and Conclusion 326

References and Bibliography 330

10 Primary Distribution Planning and Engineering Interactions 331
 10.1 Introduction 331
 10.2 Distribution Planning and the Perceived Role of Distribution 332
 10.3 Flexibility and Effectiveness in Feeder Level Planning 342
 10.4 Smart Distribution Systems 355
 10.5 Conclusion 333

References and Bibliography 360

11 Equipment Condition Assessment 361
 11.1 Introduction 361
 11.2 What Does “Condition” Mean? 362
 11.3 Analysis, Modeling, and Prediction 367
 11.4 Power Transformers 374
 11.5 Switchgear and Circuit Breakers 381
 11.6 Underground Equipment and Cables 384
 11.7 Overhead Lines and Associated Equipment 387
 11.8 Service Transformers and Service Circuits 393
 11.9 Evaluating and Prioritizing Equipment Condition 394
 11.10 Condition Tracking 403
 11.11 Summary and Final Comments 406
Contents

References and Bibliography 407

12 Optimization
12.1 Introduction 409
12.2 Prioritizing Inspection, Maintenance, and Service 410
12.3 Reliability Centered Maintenance 414
12.4 Basic Reliability-Centered Prioritization 418
12.5 Prioritization of the Type of Maintenance 429
12.6 Practical Aspects for Implementation 437
12.7 Extending Reliability-Centered Prioritization and Optimization to Other Operations Functions 445
12.8 Optimization 450
12.9 Conclusion and Recommendations 454

References and Bibliography 459

13 Planning Methods for Aging T&D Infrastructures 457
13.1 Introduction 457
13.2 Planning: Finding the Best Alternative 460
13.3 Short- and Long-Range Planning 470
13.4 The T&D Planning Process 480
13.5 The Systems Approach 500
13.6 Summary of Planning in an Aging T&D Infrastructure 504

References and Bibliography 506

14 Reliability Can Be Planned and Engineered 507
14.1 Introduction 507
14.2 Reliability Can Be Engineered 510
14.3 Methods for Distribution System Reliability Assessment 514
14.4 Application of Analytical Simulation for Detailed Reliability
Contents

Assessment 518
14.5 Use of a Hybrid Analytical Solution 524
14.6 Conclusion and Key Points 532
References and Bibliography 533

15 Six Aging Infrastructure Management Stories 537

15.1 Introduction 537
15.2 Four Philosophies of Ownership 538
15.3 Comparing the Four Ownership Philosophies 563
15.4 Organizational culture 567
15.5 Six Cases: “Success” from Six Different Perspectives 574
 15.5.1 Big States Electric – Asset Management 574
 15.5.2 Mid-State Electric – Reliability-Centered Maintenance 579
 15.5.3 International Bulk Petroleum – Buy, Burn, and Bash 583
 15.5.4 Big State University System – Standards Based 586
 15.5.5 Third-World Orphan Rescue Foundation – Uniquely Standards Based 589
 15.5.6 Huey Longwaites International Airport – Buy, Burn, and Bash 594
15.6 Conclusion 596

16 Managing an Aging Infrastructure 599

16.1 Introduction 599
16.2 An Inauspicious Beginning 600
16.3 Overview of Approach 603
16.4 The Data Chase 604
16.5 Building the Historical Model of Pole Ownership 612
16.6 Building the Predictive Model 623
16.7 What the Model Says About the Future 632
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.8</td>
<td>Projections of Pole-Related Costs and Performance</td>
<td>638</td>
</tr>
<tr>
<td>16.9</td>
<td>Finding the Bad Poles</td>
<td>648</td>
</tr>
<tr>
<td>16.10</td>
<td>Pole Replacement Merit and Economics</td>
<td>658</td>
</tr>
<tr>
<td>16.11</td>
<td>Options for Pole Replacement Programs</td>
<td>667</td>
</tr>
<tr>
<td>16.12</td>
<td>CL&P's Plan for Dealing with Aging Wooden Distribution Poles</td>
<td>678</td>
</tr>
<tr>
<td>17</td>
<td>Guidelines and Recommendations</td>
<td>689</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>689</td>
</tr>
<tr>
<td>17.2</td>
<td>Five Interrelated Factors</td>
<td>689</td>
</tr>
<tr>
<td>17.3</td>
<td>Results-Driven Management (RDM)</td>
<td>692</td>
</tr>
<tr>
<td>17.4</td>
<td>Steps to Mitigate Aging Infrastructure Effects</td>
<td>695</td>
</tr>
<tr>
<td>17.5</td>
<td>The Aging Infrastructure Management Program Itself</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>714</td>
</tr>
</tbody>
</table>

Appendix A – Notes on a Spreadsheet-Based Model for Aging Trends

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>A.2</td>
<td>The Concept: Incrementing an Age Distribution</td>
<td>3</td>
</tr>
<tr>
<td>A.3</td>
<td>Multi-Sheet Structure of a More Practical Model</td>
<td>7</td>
</tr>
<tr>
<td>A.4</td>
<td>Fitting and Calibrating a Model</td>
<td>9</td>
</tr>
<tr>
<td>A.5</td>
<td>Real World Data Situations: Getting A Solution</td>
<td>14</td>
</tr>
<tr>
<td>A.6</td>
<td>Comments on Application</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>21</td>
</tr>
</tbody>
</table>

Appendix B – Sustainable Point Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>B.2</td>
<td>Elements of Aging Infrastructure Analysis</td>
<td>4</td>
</tr>
<tr>
<td>B.3</td>
<td>Quantitative Examples</td>
<td>7</td>
</tr>
<tr>
<td>B.4</td>
<td>Metrics for Measuring Aging Infrastructures</td>
<td>24</td>
</tr>
<tr>
<td>B.5</td>
<td>Effect of Different Failure Rate Curve Shapes</td>
<td>31</td>
</tr>
</tbody>
</table>
Contents

B.6	Reading Distributions	36
B.7	Applying Economic Analysis	42
B.8	Summary of Key Points	46

Index