Solar Energy Conversion
Dynamics of Interfacial Electron and Excitation Transfer

Edited by

Piotr Piotrowiak
Rutgers University, New Jersey, USA
Email: piotr@andromeda.rutgers.edu
Contents

Chapter 1 Computational Modeling of Photocatalytic Cells 1
Steven J. Konezny and Victor S. Batista

1.1 Introduction 1
1.2 Photoelectrochemical Device Modeling 3
 1.2.1 Modeling Current-Voltage Characteristics 3
 1.2.2 Bioinspired High-Potential Porphyrin Photoanodes 5
1.3 Inverse Design of Photoabsorbers 10
1.4 Charge Transport in Nanoporous Metal Oxides 12
 1.4.1 Fluctuation-Induced Tunneling Conductivity 13
 1.4.2 Power Law Dependence of the Dark AC Conductivity 19
 1.4.3 Experimental Methods 20
1.5 Calculations of Redox Potentials: Reduction of Systematic Error 21
 1.5.1 Methodology and Benchmark Results 23
 1.5.2 Density Functional Theory Computational Methods 26
 1.5.3 Method Benchmark Results 26
 1.5.4 Choice of Reference Redox Couple 27
 1.5.5 Accounting for Solvent Polarity and Supporting Electrolyte 28
1.6 Conclusions and Outlook 29
Acknowledgements 31
References 31
Chapter 2 Charge and Exciton Dynamics in Semiconductor Quantum Dots: A Time Domain, \emph{ab Initio} View

\textit{Amanda J. Neukirch and Oleg V. Prezhdo}

2.1 Introduction 37

2.2 Theoretical Approaches 38
2.2.1 Hartree–Fock Method 39
2.2.2 Incorporation of Electron Correlation in Hartree–Fock with Configuration Interaction 39
2.2.3 Density Functional Theory 40
2.2.4 Time Domain Density Functional Theory 40
2.2.5 Nonadiabatic Molecular Dynamics 40

2.3 Proposed Mechanisms for Multiple Exciton Generation
2.3.1 Impact Ionization Process 41
2.3.2 Direct Mechanism 42
2.3.3 Dephasing Mechanism 42

2.4 Excited States and Symmetry Adapted Cluster-Configuration Interaction (SAC-CI) 42
2.4.1 Multiexciton Generation (MEG) 43
2.4.2 MEG with Dopants, Defects and Charging 46

2.5 Phonon Induced Dephasing 50
2.5.1 Optical Response Function 50
2.5.2 Phonon Dephasing in PbSe Quantum Dots 52
2.5.3 Temperature Dependence of Phonon Dephasing 54
2.5.4 Multiple Exciton Generation, Fission and Luminescence and Dephasing 54

2.6 Electron Phonon Relaxation 58
2.6.1 Time Dependent Density Functional Theory 58
2.6.2 Non-Adiabatic Molecular Dynamics 60
2.6.3 Phonon-Assisted Relaxation of Charge Carriers in PbSe 61
2.6.4 Temperature Dependence 63
2.6.5 Ligands Saturate Dangling Bonds and Accelerate Electron–Phonon Relaxation 66

2.7 Time Domain \emph{ab Initio} Study of Auger and Phonon-Assisted Auger Processes 67
2.7.1 Auger Theory 68
2.7.2 Results of Auger Studies 69

2.8 Conclusion 70
Acknowledgements 72
References 72
Chapter 3 Multiscale Modelling of Interfacial Electron Transfer

Petter Persson

3.1 Introduction
3.2 Materials Modelling
3.2.1 Modelling Methods
3.2.2 Multiscale Modelling
3.3 Interfacial Electron Transfer
3.3.1 Excitations at Interfaces
3.3.2 Interfacial Interactions
3.3.3 Surface Electron Transfer
3.3.4 Modelling Complex Materials
3.4 Conclusions and Outlook

Chapter 4 Plasmon-enhanced Solar Chemistry: Electrodynamics and Quantum Mechanics

Hanning Chen, George C. Schatz and Mark A. Ratner

4.1 Introduction
4.2 Continuum Models
4.2.1 Finite-difference Time-domain (FDTD)
4.2.2 Finite-element Method (FEM)
4.2.3 Discrete Dipole Approximation (DDA)
4.3 Many-body Theories
4.3.1 Linear Response Time-dependent Density Functional Theory (LR-TDDFT)
4.3.2 Real-time Time-dependent Density Functional Theory (RT-TDDFT)
4.4 Hybrid Approaches
4.4.1 Multiscale Maxwell–Schrödinger Scheme (MMS)
4.4.2 Hybrid RT-TDDFT/FDTD Approach (QM/ED)
4.5 Conclusions and Future Direction

Chapter 5 Dynamics of Interfacial Electron Transfer in Solar Energy Conversion As Viewed By Ultrafast Spectroscopy

Villy Sundström and Arkady Yartsev

5.1 Dye Sensitized Nanostructured Metal Oxides for Grätzel Solar Cells
5.2 Electron Injection from Sensitizer to Semiconductor in Dye Sensitized Solar Cells
5.3 Electron–Cation Charge Recombination in Dye Sensitized Semiconductor Materials 143
5.4 Dye Sensitized Solar Cell Performance in Relation Electron–Cation Recombination and Sensitizer Binding Geometry 148
5.5 Electron–Cation Interactions as a Source of Fast Recombination and Slow Charge Transport in Dye Sensitized Nanostructured Semiconductor Films 151
5.6 Conclusions 157
Acknowledgements 158
References 158

Chapter 6 Semiconductor Nanocrystals Studied by Two-Dimensional Photon Echo Spectroscopy 161
Cathy Y. Wong, Shun S. Lo and Gregory D. Scholes

6.1 Semiconductor Nanocrystals and Quantum Dot-Based Solar Cells 161
6.2 Two-Dimensional Photon Echo Spectroscopy: Background 164
6.2.1 Fundamentals of 2DPE Spectroscopy 164
6.2.2 Solvation Dynamics 165
6.2.3 Electronic Coherences 167
6.3 Two-Dimensional Photon Echo Spectroscopy: The Experiment 168
6.3.1 Wedge Calibration 169
6.3.2 Spectral Interferometry 170
6.3.3 Summary 182
6.4 Simulation of the 2D Spectra: The Case of CdSe NCs 183
6.4.1 Fine Structure of the Lowest Exciton and Biexciton States in CdSe 183
6.4.2 Determination of Exciton–biexciton Transitions 186
6.4.3 Simulating the 2D spectra 187
6.5 CdTe/CdSe Core/Shell Nanocrystals Probed by 2DPE 189
6.5.1 Simulating the 2D Spectra of CdTe/CdSe Core/Shell Nanocrystals 191
6.5.2 Discussion 195
6.6 Conclusion 198
Acknowledgements 199
References 199
Chapter 7 Ultrafast Optical Imaging and Microspectroscopy

Piotr Piotrowiak, Libai Huang and Lars Gundlach

7.1 Introduction 203

7.2 Kerr-Gated Femtosecond Fluorescence Microscopy and Micro-Spectroscopy (KGFM)

7.2.1 Background and Experimental Considerations 205

7.2.2 Excitation Fluence, Orientation, Shape and Size Dependence of Carrier Dynamics in CdS$_x$Se$_{1-x}$ Nanobelts 208

7.2.3 Fluorescence Dynamics of Quantum Dots in Close Proximity to Metal Surfaces 212

7.3 Femtosecond Pump Probe Transient Absorption Microscopy (PPTAM)

7.3.1 Background and Experimental Considerations 213

7.3.2 Examples of Applications of PPTAM to the Study of Exciton and Charge Carrier Dynamics in Nanostructures and Heterogeneous Materials 215

7.4 Future Challenges: Single Molecule Detection, Higher Time Resolution and Spatial Super-Resolution in Femtosecond Microscopy

7.4.1 Single Molecule Femtosecond Microscopy 218

7.4.2 Sub 100 Femtosecond Time Resolution 220

7.4.3 Spatial Super-Resolution 221

7.5 Conclusions 222

Acknowledgements 222

References 223

Chapter 8 Ultrafast Multiphoton Photoemission Microscopy of Solid Surfaces in Real and Reciprocal Space

8.1 Introduction 225

8.2 Frequency vs. Time Domain Measurements of Interfacial Electron Dynamics 228

8.3 Time-Resolved Ultrafast Multiphoton Photoemission 229

8.4 Time-Resolved Photoemission Electron Microscopy 231

8.5 Time-Resolved Photoemission Electron Microscopy (TR-PEEM) Imaging of Plasmonic Phenomena 234
<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Light at the Tip: Hybrid Scanning Tunneling/Optical Spectroscopy Microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction 261</td>
</tr>
<tr>
<td>9.2</td>
<td>Light Emission from the STM 262</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Mechanism 262</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Role of Surface Plasmons in Scanning Tunneling Luminescence 264</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Experimental Considerations 265</td>
</tr>
<tr>
<td>9.3</td>
<td>Light Emission from Nanostructures 266</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Individual Atoms, Molecules and Surface States 266</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Thin Film and Organic Semiconductors 268</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Nanocrystals 271</td>
</tr>
<tr>
<td>9.4</td>
<td>Time-Resolved Studies of Photon Emission in the STM 275</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions and Outlook 276</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>277</td>
</tr>
<tr>
<td>References</td>
<td>277</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Time Resolved Infrared Spectroscopy of Metal Oxides and Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction 281</td>
</tr>
<tr>
<td>10.2</td>
<td>Experimental Techniques 286</td>
</tr>
<tr>
<td>10.3</td>
<td>Mechanism of Interfacial Electron Injection into Metal Oxides 287</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Metal Oxide Semiconductor Dependence 288</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Dye Dependence 289</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Effect of Solvent 292</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Effect of Ions 292</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Metal Nanoparticle to Metal Oxides 294</td>
</tr>
</tbody>
</table>
Chapter 11 Carrier Dynamics in Photovoltaic Structures and Materials Studied by Time-Resolved Terahertz Spectroscopy

Enrique Cánovas, Joep Pijpers, Ronald Ulbricht and Mischa Bonn

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>301</td>
</tr>
<tr>
<td>11.2 Time-Resolved Terahertz (THz) Spectroscopy (TRTS)</td>
<td>303</td>
</tr>
<tr>
<td>11.2.1 Terahertz Generation, Detection and Time-Resolved Terahertz Spectroscopy Setup</td>
<td>303</td>
</tr>
<tr>
<td>11.2.2 Characteristic Terahertz Responses in Semiconductors</td>
<td>308</td>
</tr>
<tr>
<td>11.3 TRTS Carrier Dynamics Studies of High Efficiency Photovoltaic Concepts</td>
<td>314</td>
</tr>
<tr>
<td>11.3.1 Relaxation of Hot Carriers in Semiconductor Quantum Dots</td>
<td>315</td>
</tr>
<tr>
<td>11.3.2 Carrier Multiplication (CM) in Semiconductors</td>
<td>316</td>
</tr>
<tr>
<td>11.4 Interfacial Electron Transfer in Photovoltaic Structures Probed by Time-Resolved Terahertz Spectroscopy</td>
<td>323</td>
</tr>
<tr>
<td>11.4.1 Dye Sensitizing Mesoporous Oxide Films</td>
<td>323</td>
</tr>
<tr>
<td>11.4.2 Quantum Dot Sensitizing Mesoporous Oxide Films</td>
<td>327</td>
</tr>
<tr>
<td>11.4.3 Quantum Dot Superlattices</td>
<td>329</td>
</tr>
<tr>
<td>11.4.4 Exciton Dissociation in Semiconducting Polymers</td>
<td>330</td>
</tr>
<tr>
<td>11.5 Summary</td>
<td>330</td>
</tr>
<tr>
<td>References</td>
<td>331</td>
</tr>
</tbody>
</table>

Chapter 12 X-ray Transient Absorption Spectroscopy for Solar Energy Research

Lin X. Chen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>12.2 X-ray Transient Absorption Spectroscopy (XTA): Capabilities and Development</td>
<td>338</td>
</tr>
<tr>
<td>12.2.1 Development of X-ray Transient Absorption Spectroscopy</td>
<td>338</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>12.3</td>
<td>Applications of XTA in Solar Energy Conversion Research: Examples</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Metalloporphyrin Excited State Structural Dynamics (Homogeneous Electron/Energy Transfer)</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Photoinduced Interfacial Electron Transfer (Heterogeneous Electron Transfer)</td>
</tr>
<tr>
<td>12.4</td>
<td>Future Research and Development</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Visualization of Fundamental Events in Photon–Matter Interactions: Capturing the Transition States</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Detecting Transient Structures with Low Concentrations in Photocatalytic or Irreversible Processes and Rephasing the Coherence of Nuclear Motions in an Ensemble</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Theoretical Modeling</td>
</tr>
<tr>
<td>12.5</td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

Subject Index

371