Artificial Intelligence in the 21st Century

A Living Introduction

Stephen Lucci
The City College of New York, CUNY

Danny Kopec
Brooklyn College, CUNY

Mercury Learning and Information
Dulles, Virginia
Boston, Massachusetts
New Delhi
Contents

Preface xvii
Acknowledgments xxiii
Credits xxvii

Part I: Introduction 3
1. Overview of Artificial Intelligence 3
 1.0 Introduction 4
 1.0.1 What Is Artificial Intelligence? 4
 1.0.2 What Is Thinking? What Is Intelligence? 5
 1.1 The Turing Test 7
 1.1.1 Definition of the Turing Test 7
 1.1.2 Controversies and Criticisms of the Turing Test 9
 Block's Criticism of the Turing Test 9
 Searle's Criticism: The Chinese Room 9
 1.2 Strong AI versus Weak AI 12
 1.3 Heuristics 12
 1.3.1 The Diagonal of a Rectangular Solid: Solving a Simpler, 13
 but Related Problem
 1.3.2 The Water Jug Problem: Working Backward 13
 1.4 Identifying Problems Suitable for AI 14
 1.5 Applications and Methods 17
 1.5.1 Search Algorithms and Puzzles 18
 1.5.2 Two-Person Games 19
 1.5.3 Automated Reasoning 20
 1.5.4 Production Rules and Expert Systems 21
 1.5.5 Cellular Automata 22
 1.5.6 Neural Computation 23
 1.5.7 Genetic Algorithms 24
 1.5.8 Knowledge Representation 24
 1.5.9 Uncertainty Reasoning 26
1.6 Early History of AI
 1.6.1 Logicians and Logic Machines 28
1.7 Recent History of AI to the Present
 1.7.1 Games 30
 1.7.2 Expert Systems 31
 1.7.3 Neural Computing 32
 1.7.4 Evolutionary Computation 32
 1.7.5 Natural Language Processing 33
 1.7.6 Bioinformatics 35
1.8 AI in the New Millennium 36
1.9 Chapter Summary 38

Part II: Fundamentals 45
2. Uninformed Search Intelligence
 2.0 Introduction: Search in Intelligent Systems 48
 2.1 State-Space Graphs
 2.1.1 The False Coin Problem 49
 2.2 Generate-and-Test Paradigm
 2.2.1 Backtracking 52
 2.2.2 The Greedy Algorithm 55
 2.2.3 The Traveling Salesperson Problem 57
 2.3 Blind Search Algorithms
 2.3.1 Depth First Search 59
 2.3.2 Breadth First Search 61
 2.4 Implementing and Comparing Blind Search Algorithms
 2.4.1 Implementing a Depth First Search Solution 63
 Algorithm: Breadth First Search 65
 2.4.2 Implementing a Breadth First Search Solution 65
 2.4.3 Measuring Problem-Solving Performance
 Completeness 66
 Optimality 66
 Time Complexity 66
 Space Complexity 66
 2.4.4 Comparing dfs and bfs 67
 2.5 Chapter Summary 71

3. Informed Search
 3.0 Introduction 77
 3.1 Heuristics 79
 3.2 Informed Search Algorithms (Part 1) – Finding any Solution
 3.2.1 Hill Climbing 86
 3.2.2 Steepest-Ascent Hill Climbing
 The Foothills Problem 88
 The Plateau Problem 88
 The Ridge Problem 88
3.3 The Best-First Search
3.4 The Beam Search
3.5 Additional Metrics for Search Algorithms
3.6 Informed Search (Part 2) – Finding an Optimal Solution
 3.6.1 Branch and Bound
 3.6.2 Branch and Bound with Underestimates
 3.6.3 Branch and Bound with Dynamic Programming
 3.6.4 The A* Search
3.7 Informed Search (Part 3) – Advanced Search Algorithms
 3.7.1 Constraint Satisfaction Search
 3.7.2 AND/OR Trees
 3.7.3 The Bidirectional Search
3.8 Chapter Summary
4. Search Using Games
 4.0 Introduction
 4.1 Game Trees and Minimax Evaluation
 4.1.1 Heuristic Evaluation
 4.1.2 Minimax Evaluation of Game Trees
 4.2 Minimax with Alpha-Beta Pruning
 4.3 Variations and Improvements to Minimax
 4.3.1 Negamax Algorithm
 4.3.2 Progressive Deepening
 4.3.3 Heuristic Continuation and the Horizon Effect
 4.4 Games of Chance and the Expectiminimax Algorithm
 4.5 Game Theory
 4.5.1 The Iterated Prisoner’s Dilemma
 4.6 Chapter Summary
5. Logic in Artificial Intelligence
 5.0 Introduction
 5.1 Logic and Representation
 5.2 Propositional Logic
 5.2.1 Propositional Logic – Basics
 5.2.2 Arguments in the Propositional Logic
 5.2.3 Proving Arguments in the Propositional Logic Valid – A Second Approach
 5.3 Predicate Logic – Introduction
 5.3.1 Unification in the Predicate Logic
 5.3.2 Resolution in the Predicate Logic
 5.3.3 Converting a Predicate Expression to Clause Form
 5.4 Several Other Logics
 5.4.1 Second Order Logic
 5.4.2 Non-monotonic Logic
 5.4.3 Fuzzy Logic
 5.4.4 Modal Logic
 5.5 Chapter Summary
6. Knowledge Representation

6.0 Introduction
6.1 Graphical Sketches and the Human Window
6.2 Graphs and the Bridges of Königsberg Problem
6.3 Search Trees
 6.3.1 Decision Tree
6.4 Representational Choices
6.5 Production Systems
6.6 Object Orientation
6.7 Frames
6.8 Scripts and the Conceptual Dependency System
6.9 Semantic Networks
6.10 Associations
6.11 More Recent Approaches
 6.11.1 Concept Maps
 6.11.2 Conceptual Graphs
 6.11.3 Baecker’s Work
6.12 Agents: Intelligent or Otherwise
 6.12.1 A Little Agent History
 6.12.2 Contemporary Agents
 KaZaA
 Monitoring Agent: Spector Pro
 Zero Intelligence Plus (Zip)
 HAL: The Next Generation Intelligent Room
 6.12.3 The Semantic Web
 6.12.4 The Future – According to IBM
 6.12.5 Authors’ Perspective
6.13 Chapter Summary

7. Production Systems

7.0 Introduction
7.1 Background
 7.1.1 Strong Methods vs. Weak Methods
7.2 Basic Examples
7.3 The CarBuyer System
 7.3.1 Advantages of Production Systems
7.4 Production Systems and Inference Methods
 7.4.1 Conflict Resolution
 7.4.2 Forward Chaining
 Examples of Forward Chaining
 7.4.3 Backward Chaining
 Examples of Backward Chaining
7.5 Production Systems and Cellular Automata
7.6 Stochastic Processes and Markov Chains
7.7 Chapter Summary
Part III: Knowledge-Based Systems

8. Uncertainty in AI
 8.0 Introduction
 8.1 Fuzzy Sets
 8.2 Fuzzy Logic
 8.3 Fuzzy Inferences
 8.4 Probability Theory and Uncertainty
 8.5 Chapter Summary

9. Expert Systems
 9.0 Introduction
 9.1 Background
 9.1.1 Human and Machine Experts
 9.2 Characteristics of Expert Systems
 9.3 Knowledge Engineering
 9.4 Knowledge Acquisition
 9.5 Classic Expert Systems
 9.5.1 DENDRAL
 9.5.2 MYCIN
 9.5.3 EMYCIN
 9.5.4 PROSPECTOR
 9.5.5 Fuzzy Knowledge and Bayes’ Rule
 9.6 Methods for Efficiency
 9.6.1 Demon Rules
 9.6.2 The Rete Algorithm
 9.7 Case-Based Reasoning
 9.8 More Recent Expert Systems
 9.8.1 Systems for Improving Employment Matching
 9.8.2 An Expert System for Vibration Fault Diagnosis
 9.8.3 Automatic Dental Identification
 9.8.4 More Expert Systems Employing Case-Based Reasoning
 9.9 Chapter Summary

10. Neural Networks
 10.0 Introduction
 10.1 Rudiments of Artificial Neural Networks
 10.2 McCulloch–Pitts Network
 10.3 The Perceptron Learning Rule
 10.4 The Delta Rule
 10.5 Backpropagation
 10.6 Implementation Concerns
 10.6.1 Pattern Analysis
 10.6.2 Training Methodology
 10.7 Discrete Hopfield Networks
 10.8 Application Areas
 10.9 Chapter Summary
Part IV: Advanced Topics

12. Natural Language Understanding

12.0 Introduction

12.1 Overview: The Problems and Possibilities of Language

12.1.1 Ambiguity

12.2 History of Natural Language Processing (NLP)

12.2.1 Foundations (1940s and 1950s)

12.2.2 Symbolic vs. Stochastic Approaches (1957–1970)

12.2.3 The Four Paradigms: 1970–1983

12.2.4 Empiricism and Finite-State Models

12.2.5 The Field Comes Together: 1994–1999

12.2.6 The Rise of Machine Learning

12.3 Syntax and Formal Grammars

12.3.1 Types of Grammars

- Type 0: Recursively Enumerable Languages
- Type 1: Context Sensitive Languages
- Type 2: Context-Free Languages
- Type 3: Regular Languages

12.3.2 Syntactic Parsing: The CYK Algorithm

12.4 Semantic Knowledge and Extended Grammars

12.4.1 Transformational Grammar

12.4.2 Systemic Grammar

12.4.3 Case Grammars

12.4.4 Semantic Grammars

12.4.5 Schank’s Systems

- MARGIE
- Inference Mode
- Paraphrase Mode
- SAM
- PAM

12.5 Statistical Methods in NLP

12.5.1 Statistical Parsing

12.5.2 Machine Translation (Revisited) and IBM’s Candide System

12.5.3 Word Sense Disambiguation

12.6 Probabilistic Models for Statistical NLP

12.6.1 Hidden Markov Models

12.6.2 The Viterbi Algorithm
D. Applications and Data
 D.1 Examples of Applications
 1. Expert Systems
 2. Neural Networks
 3. Robotics
 4. Fuzzy Logic
 D.2 Data For Neural Training Exercises
 D.3 An Overview of Advanced Computer Games
 1. The Rules and Objectives of Bridge
 2. The Rules and Objectives of Chess
 3. The History of Advanced Computer Games
E. Solutions to Selected Exercises

Index