Cognitive Radio Techniques

Spectrum Sensing, Interference Mitigation, and Localization

Kandeepan Sithamparanathan
Andrea Giorgetti
## Contents

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction to Cognitive Radios</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Definition of Cognitive Radios</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Software-Defined Radios</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>The Cognitive Cycle</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>The Radio Scene Analysis</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Spectrum Occupancy Classification</td>
<td>9</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Hidden Terminals</td>
<td>9</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Locating Primary Users</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Dynamic Spectrum Access and Management</td>
<td>10</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Spectrum Underlay and Overlay</td>
<td>11</td>
</tr>
<tr>
<td>1.7</td>
<td>Regulatory Aspects</td>
<td>13</td>
</tr>
<tr>
<td>1.7.1</td>
<td>The IEEE DySPAN Standards Committee</td>
<td>14</td>
</tr>
<tr>
<td>1.7.2</td>
<td>The IEEE 802.22 WRAN Standards</td>
<td>15</td>
</tr>
<tr>
<td>1.7.3</td>
<td>The ETSI-RRS Technical Committee</td>
<td>16</td>
</tr>
</tbody>
</table>

| 1.8  | Application Clusters | 17 |
| 1.8.1 | Cellular Mobile Networks | 17 |
| 1.8.2 | Energy Efficiency in Wireless Networks | 18 |
| 1.8.3 | Public Safety Communications | 18 |
| 1.8.4 | Coexistence of UWB Radio Technology | 18 |
| 1.8.5 | Wireless Networks for Smart Grids | 19 |
| 1.8.6 | Vehicular Networks | 19 |
| 1.8.7 | Defense Application Systems | 19 |

References 20

Part I  Spectrum Sensing in Cognitive Radios 23

2  Fundamentals of Spectrum Sensing and Detection 25

| 2.1 | Introduction | 25 |

| 2.2  | Statistical Detection Techniques | 28 |
| 2.2.1 | Maximum A Posteriori Detection | 28 |
| 2.2.2 | Maximum Likelihood Detection | 29 |
| 2.2.3 | The Neyman-Pearson Detector | 29 |
| 2.2.4 | The Bayesian Risk-Based Detector | 30 |

| 2.3  | Continuous and Discrete Signal Detection | 30 |

| 2.4  | Detection Performance | 31 |
| 2.4.1 | Detection Performance Versus the SNR | 33 |
| 2.4.2 | Detection Performance Versus the Signal Observation Length | 33 |
| 2.4.3 | The ROC Curves | 34 |
| 2.4.4 | Area Under the ROC Curves | 34 |
2.5 Wireless Channel Models

2.5.1 Mean Pathloss

2.5.2 Shadowing

2.5.3 Small Scale Fading

2.6 Basic Models for Spectrum Occupancy

2.6.1 The Poisson-Exponential Model

2.6.2 The Markov Modulated Poisson Process

2.6.3 The Poisson-Pareto Burst Process

2.7 Stochastic Analysis of Radio Signals

2.8 Blind, Partial, and Complete Context Aware Signal Detection

2.8.1 Blind Signal Detection

2.8.2 Partial-Context Aware Signal Detection

2.8.3 Fully Context Aware Detection

2.9 Summary

References

3 Introduction to Spectrum Sensing Techniques

3.1 Introduction

3.2 Spectrum Sensing with Energy Detection

3.2.1 Energy Detector

3.2.2 Energy Detector in Gaussian Channel

3.2.3 Energy Detector in Fading Channels

3.2.4 Energy Detector in Fading Channels with Shadowing
3.3 Energy detection and noise power uncertainty 52
  3.3.1 ED Threshold Mismatch 53
  3.3.2 SNR Wall 53
  3.3.3 Existence of the SNR Wall 55

3.4 Spectrum Sensing with Cyclostationary Feature Detection 56
  3.4.1 Cyclostationarity Analysis 57
  3.4.2 Cyclostationary Feature-Based Detector 59

3.5 Spectrum Sensing with Matched Filter Detection 60

3.6 Other Spectrum Sensing Techniques 61
  3.6.1 Covariance-Based Method 62
  3.6.2 Eigenvalue-Based Method 63
  3.6.3 Wavelet-Based Edge Detection 63
  3.6.4 Spectral Estimation Methods 64

3.7 Summary 65

References 65

4 Temporal Spectrum Sensing and Performance Analysis 69

4.1 Introduction 69

4.2 Temporal Periodic-Spectrum Sensing 71

4.3 Primary User Spectral Occupancy Model with Poisson Arrival
  4.3.1 Exponential Random Spectral Occupancy Time 73
  4.3.2 Pareto Random Spectral Occupancy Time 73
4.3.3 Classifying Primary User Spectrum Occupancy Levels 74

4.4 Detection Performance of Periodic-Sensing with Poisson Arrival and Deterministic Occupancy Time 75

4.4.1 Spectral Occupancy Probability 75

4.4.2 Probability of Detection 76

4.4.3 False Alarm Probability 78

4.5 Primary User Misdetection Risk Regions 80

4.6 Temporal Periodic-Sensing with Poisson-exponential Occupancy Model 82

4.7 Temporal Periodic-Sensing with Poisson-Pareto Occupancy Model 84

4.8 Temporal Periodic-Sensing Performance Comparison with Deterministic and Random Occupancies 85

4.9 Temporal Periodic-Sensing in Noise 86

4.10 Temporal Periodic-Sensing in Noise with Signal Fading/Shadowing 91

4.11 Optimum Sensing Period 92

4.12 Reality of Spectrum Occupancy Models 93

4.13 Summary 93

References 94
# Cooperative Spectrum Sensing

## 5.1 Introduction

## 5.2 Spatio-Temporal Fusion Strategy

### 5.2.1 Synchronized Reporting

### 5.2.2 Nonsynchronized Reporting

## 5.3 Hard Decision Fusion

### 5.3.1 Chair-Varshney Fusion Strategy

### 5.3.2 The $M$-out-of-$N$ Fusion Strategy

## 5.4 Soft Decision Fusion

### 5.4.1 Optimal Soft Decision Fusion

### 5.4.2 Equal Gain Soft Decision Fusion

### 5.4.3 Maximal Ratio Soft Decision Fusion

## 5.5 Cluster-Based Cooperative Spectrum Sensing

### 5.5.1 Space-Divisional Cluster

### 5.5.2 Frequency-Divisional Cluster

### 5.5.3 Time-Divisional Cluster

## 5.6 Noisy Reporting Channels

## 5.7 Other Issues in Cooperative Sensing

### 5.7.1 Cooperation Overhead and the Reporting Channel

### 5.7.2 Unreliable Reporter and Accreditation

### 5.7.3 Security Issues

### 5.7.4 Knowledge Distribution

### 5.7.5 Spatial Limitation

## 5.8 Summary

## References
6 Distributed Spectrum Sensing 121

6.1 Introduction 121

6.2 Parallel Topology-Based Distributed Sensing 123

6.3 Sequential Topology-Based Distributed Sensing 125

6.3.1 Detection Performance 127

6.4 Tree Topology-Based Distributed Sensing 127

6.5 Ring-Around Distributed Sensing 128

6.5.1 Message Passing in Ring-Around Sensing 130

6.5.2 Hard Decision Fusion with the OR Rule 130

6.5.3 Equal Ratio Combining Soft Decision-Based Fusion 131

6.6 Summary 132

References 132

7 Advanced Spectrum Sensing Topics 135

7.1 Introduction 135

7.2 Spectrum Sensing in UWB Radios with Frequency Sweeping 136

7.3 Spectrum Sensing in OFDM Systems 139

7.3.1 The Likelihood Ratio Test 140

7.3.2 Frequency Domain Detection 141

7.4 Combined Localization and Detection of Primary Users 142

7.4.1 Detection Using the Likelihood Function $f_{r|H_i}(r|H_i)$ 143
7.4.2 Detection Using the Output of $L$ 144
7.5 Sequential Spectrum Sensing 145
7.5.1 The Sequential Probability Ratio Test 145
7.6 Spectrum Sensing with Ordered Statistics 146
7.7 Spectrum Sensing with Reconfigurable Antennas 147
7.7.1 Frequency Reconfigurability 148
7.7.2 Radiation Pattern Reconfigurability 150
7.8 Spectrum Sensing in 3D-Space 150
7.9 Summary 153
References 154

Part II Coexistence and Interference Mitigation Techniques 157

8 Fundamentals of Coexistence and Interference Mitigation Techniques 159
8.1 Interference in Cognitive Radio and its Characterization 160
8.1.1 Intentional Interference: From Jamming to Emulation 160
8.1.2 Unintentional Interference 163
8.1.3 Metrics to Quantify Interference and its Effects 163
8.2 Coexistence Scenarios 167
8.2.1 Spatial Configuration of the Systems 169
8.2.2 From Narrowband to Ultrawideband 170
8.2.3 The Coexistence Region 172
8.3 Interference Mitigation Techniques 173
8.3.1 Interference Mitigation in Spread Spectrum CRs 174
8.3.2 Power Control 175
8.3.3 Band Relocation 175
8.3.4 Spectrum Shaping 175
8.3.5 Adaptive Antenna Techniques 176

8.4 Summary and Further Readings 176

References 176

9 Coexistence Analysis 181

9.1 Coexistence Between Heterogeneous Wireless Systems 182

9.2 Channel Model 183
9.2.1 Block Fading Channel 185

9.3 Interference Modeling 185
9.3.1 Gaussian Approximation 186
9.3.2 Tone Approximation 186
9.3.3 Multitone Approximation 187
9.3.4 Band-Limited Gaussian Process Approximation 188
9.3.5 Pulse Train Model 188
9.3.6 Modeling the Interfering Power 188

9.4 The Effect of Narrowband Interference on a Wideband Communication 189
9.4.1 Single-Carrier WB Communication in the Presence of NB Interference 190
9.4.2 Multicarrier WB Communication in the Presence of NB Interference 203
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>The Effect of Wideband Interference on a Narrowband Communication</td>
<td>208</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Single-Carrier NB Communication in the Presence of WB Interference</td>
<td>209</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Multicarrier NB Communication in the Presence of WB Interference</td>
<td>217</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary and Further Readings</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td><strong>Coexistence in Network Scenarios</strong></td>
<td>223</td>
</tr>
<tr>
<td>10.1</td>
<td>Coexistence Between Heterogeneous Networks</td>
<td>223</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Network Scenario Definition</td>
<td>224</td>
</tr>
<tr>
<td>10.2</td>
<td>Statistical Characterization of Network Interference</td>
<td>226</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Interference Generated Outside the Guard Zone</td>
<td>229</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Interference From the Whole Plane</td>
<td>231</td>
</tr>
<tr>
<td>10.3</td>
<td>The Effect of Interference on Performance of Coexisting Networks</td>
<td>236</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Transmission Characteristics of the Nodes</td>
<td>236</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Narrowband Communication in the Presence of Wideband Network Interference</td>
<td>237</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Wideband Communication in the Presence of Narrowband Network Interference</td>
<td>240</td>
</tr>
<tr>
<td>10.4</td>
<td>Performance Examples of Heterogeneous Coexisting Networks</td>
<td>243</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary and Further Readings</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>246</td>
</tr>
</tbody>
</table>
11 Interference Mitigation Techniques
Enabling Coexistence 249

11.1 Cognitive Radio Transmission Techniques
Enabling Coexistence 250
11.1.1 Spectrum Interweave: Interference
Avoiding Behavior 250
11.1.2 Spectrum Underlay: Interference
Controlling Behavior 251
11.1.3 Spectrum Overlay: Interference
Mitigating Behavior 252

11.2 The Secondary User Perspective: Performance
of CR Transmission Strategies 253
11.2.1 System Model 254
11.2.2 Comparison of the SU Achievable Rates 255

11.3 The Primary User Perspective: Impact of
CR Transmission Strategies 256
11.3.1 The Scenario 257
11.3.2 Cognitive Network Interference as a
Misdection Problem 259
11.3.3 PU Outage due to Misdection by a
Single SU 260
11.3.4 PU Outage due to Misdetections in a
Cognitive Network 261
11.3.5 A Case Study 262

11.4 Summary and Further Readings 265

References 266

12 Advanced Interference Mitigation
Techniques 269

12.1 Interference Mitigation Techniques in
UWB Radios 270
12.1.1 Interference Mitigation in UWB Impulse Radio 271
12.1.2 Interference Mitigation in MB-OFDM UWB Radio 279
12.2 Interference Mitigation in Spatial Domain 283
12.2.1 Example: MIMO Beamforming 284
12.3 Summary and Further Readings 287
References 287

Part III Localization and Radio Environment Mapping 291

13 Fundamentals of Ranging and Localization for Cognitive Radio 293
13.1 Ranging Techniques and Enabling Technologies 294
13.1.1 Time-Based Ranging 294
13.1.2 RSS-Based Ranging 296
13.1.3 Other Ranging Techniques 297
13.1.4 Error Sources in Time-Based Ranging 298
13.2 Performance Limits of Time-based Ranging: From Theory to Practice 302
13.2.1 Theoretical Performance Limits 303
13.2.2 Practical Schemes 304
13.3 Cognitive Ranging 306
13.4 Localization Techniques 308
13.4.1 Single-Hop Localization 309
13.4.2 Multihop Localization 311
<table>
<thead>
<tr>
<th>13.4.3</th>
<th>Anchor-Free Localization</th>
<th>312</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.4</td>
<td>Location Tracking</td>
<td>313</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Case Study</td>
<td>314</td>
</tr>
<tr>
<td>13.5</td>
<td>Summary and Further Readings</td>
<td>316</td>
</tr>
</tbody>
</table>

| References | 316 |

### 14 Localization of Primary Users  
321

<table>
<thead>
<tr>
<th>14.1</th>
<th>Localization of Noncollaborative Emitters</th>
<th>322</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.1</td>
<td>Range-Free Localization of PUs</td>
<td>323</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Semirange-Based Localization of PUs</td>
<td>324</td>
</tr>
<tr>
<td>14.1.3</td>
<td>RSSI-Based Localization of PUs</td>
<td>325</td>
</tr>
<tr>
<td>14.1.4</td>
<td>Other Range-Based Algorithms</td>
<td>329</td>
</tr>
<tr>
<td>14.1.5</td>
<td>Tracking of PUs</td>
<td>330</td>
</tr>
<tr>
<td>14.1.6</td>
<td>Case Study</td>
<td>331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14.2</th>
<th>Radio Environment Mapping</th>
<th>334</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.1</td>
<td>Radio Cartography</td>
<td>336</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Database for SU Access Control</td>
<td>338</td>
</tr>
</tbody>
</table>

| 14.3 | Summary and Further Readings | 339 |

| References | 339 |

### 15 Conclusions and Future Work  
343

| Glossary | 349 |

| About the Authors | 355 |

| Index | 357 |