Detection and Estimation for Communication and Radar Systems

KUNG YAO
University of California, Los Angeles

FLAVIO LORENZELLI
The Aerospace Corporation, Los Angeles

CHIAO-EN CHEN
National Chung Cheng University, Taiwan
Contents

Preface

Introduction and motivation to detection and estimation

1.1 Introduction

1.2 A simple binary decision problem

1.3 A simple correlation receiver

1.4 Importance of SNR and geometry of the signal vectors in detection theory

1.5 BPSK communication systems for different ranges

1.6 Estimation problems

1.6.1 Two simple estimation problems

1.6.2 Least-absolute-error criterion

1.6.3 Least-square-error criterion

1.6.4 Estimation robustness

1.6.5 Minimum mean-square-error criterion

1.7 Conclusions

1.8 Comments

References

Problems

Review of probability and random processes

2.1 Review of probability

2.2 Gaussian random vectors

2.2.1 Marginal and conditional pdfs of Gaussian random vectors

2.3 Random processes (stochastic processes)

2.4 Stationarity

2.5 Gaussian random process

2.6 Ensemble averaging, time averaging, and ergodicity

2.7 WSS random sequence

2.8 Conclusions

2.9 Comments

2.A Proof of Theorem 2.1 in Section 2.2.1

2.B Proof of Theorem 2.2 in Section 2.2.1
5.3 M-ary detection 154
5.4 Optimal signal design for M-ary systems 168
5.5 Classification of M patterns 171
 5.5.1 Introduction to pattern recognition and classification 171
 5.5.2 Deterministic pattern recognition 173
5.6 Conclusions 185
5.7 Comments 186
References 186
Problems 187

6 Non-coherent detection in communication and radar systems 190
6.1 Binary detection of a sinusoid with a random phase 190
6.2 Performance analysis of the binary non-coherent detection system 195
6.3 Non-coherent detection in radar receivers 201
 6.3.1 Coherent integration in radar 201
 6.3.2 Post detection integration in a radar system 202
 6.3.3 Double-threshold detection in a radar system 205
 6.3.4 Constant False Alarm Rate (CFAR) 207
6.4 Conclusions 210
6.5 Comments 210
References 211
Problems 211

7 Parameter estimation 214
7.1 Introduction 214
7.2 Mean-square estimation 215
 7.2.1 Non-linear mean-square estimation and conditional expectation 218
 7.2.2 Geometry of the orthogonal principle and mean-square estimation 220
 7.2.3 Block and recursive mean-square estimations 226
7.3 Linear LS and LAE estimation and related robustness and sparse solutions 230
 7.3.1 LS estimation 230
 7.3.2 Robustness to outlier (*) of LAE solution relative to LS solution 232
 7.3.3 Minimization based on l_2 and l_1 norms for solving linear system of equations (*) 234
7.4 Basic properties of statistical parameter estimation 238
 7.4.1 Cramér–Rao Bound 243
 7.4.2 Maximum likelihood estimator 247
 7.4.3 Maximum a posteriori estimator 253
 7.4.4 Bayes estimator 255
7.5 Conclusions 258
7.6 Comments 258
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.A</td>
<td>Proof of Theorem 7.1 of Section 7.3.3</td>
<td>259</td>
</tr>
<tr>
<td>7.B</td>
<td>Proof of Theorem 7.3 of Section 7.4.1</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>264</td>
</tr>
<tr>
<td>8</td>
<td>Analytical and simulation methods for system performance analysis</td>
<td>271</td>
</tr>
<tr>
<td>8.1</td>
<td>Analysis of receiver performance with Gaussian noise</td>
<td>272</td>
</tr>
<tr>
<td>8.2</td>
<td>Analysis of receiver performance with Gaussian noise and other random interferences</td>
<td>276</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Evaluation of P_e based on moment bound method</td>
<td>278</td>
</tr>
<tr>
<td>8.3</td>
<td>Analysis of receiver performance with non-Gaussian noises</td>
<td>282</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Noises with heavy tails</td>
<td>282</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Fading channel modeling and performance analysis</td>
<td>287</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Probabilities of false alarm and detection with robustness constraint</td>
<td>293</td>
</tr>
<tr>
<td>8.4</td>
<td>Monte Carlo simulation and importance sampling in communication/radar performance analysis</td>
<td>296</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Introduction to Monte Carlo simulation</td>
<td>297</td>
</tr>
<tr>
<td>8.4.2</td>
<td>MC importance sampling simulation method</td>
<td>299</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions</td>
<td>304</td>
</tr>
<tr>
<td>8.6</td>
<td>Comments</td>
<td>304</td>
</tr>
<tr>
<td>8.A</td>
<td>Generation of pseudo-random numbers</td>
<td>306</td>
</tr>
<tr>
<td>8.A.1</td>
<td>Uniformly distributed pseudo-random number generation</td>
<td>307</td>
</tr>
<tr>
<td>8.A.2</td>
<td>Gaussian distributed pseudo-random number generation</td>
<td>309</td>
</tr>
<tr>
<td>8.A.3</td>
<td>Pseudo-random generation of sequences with arbitrary distributions</td>
<td>309</td>
</tr>
<tr>
<td>8.B</td>
<td>Explicit solution of $p_V(\cdot)$</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>314</td>
</tr>
</tbody>
</table>

Index 318