Physics of Transitional Shear Flows

Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

Springer
Contents

Part I Fundamentals of the linear stability theory

1 Concept of hydrodynamic stability
 1.1 Hydrodynamic stability
 1.2 Stability of fluid motion in time
 1.2.1 Critical parameters for onset of instability
 1.2.2 Conditional stability
 1.2.3 Growth of disturbance energy
References
Further Reading

2 Theoretical aspects
 2.1 Formulation of linear hydrodynamic stability problems
 2.1.1 Spectral formulation of stability
 2.1.2 Inviscid instability mechanism
 2.1.3 Viscous instability mechanism
 2.2 Instability in space
 2.3 Gaster's transformation
 2.4 Squire theorem
 2.5 Adjoint problem and bi-orthogonality of normal modes
 2.6 Completeness of solutions for the Orr–Sommerfeld and Squire equations
References
Further Reading

Part II Generic problems

3 Instability of plane parallel flows
 3.1 Plane Couette flow

References
Further Reading

xiii
3.2 Plane Poiseuille flow 36
 3.2.1 Numerical results 37
 3.2.2 Experimental linear stability investigations 39
3.3 Method of linear stability calculations 40
 Exercises ... 45
 References ... 45
 Further Reading 46

4 Instability of the flat-plate boundary layer 47
 4.1 Historical notes 47
 4.2 Solution of the Orr–Sommerfeld equation for the boundary layers 51
 4.3 Nonparallel flow effects 54
 4.3.1 Outline of theoretical approaches to account for nonparallel effects 55
 4.3.2 Modern view on the place and role of nonparallel effects in the Blasius boundary layer 60
 Exercises ... 64
 References ... 64
 Further Reading 66

5 Instabilities of plane flows over curvilinear surfaces 67
 5.1 Influence of curvature on the basic flow 67
 5.1.1 Equations of motion in cylindrical coordinates 67
 5.1.2 Description of the flow in boundary layers over curvilinear surfaces 69
 5.2 Hydrodynamic instability at curvilinear surfaces 71
 5.2.1 Taylor problem 73
 5.2.2 Dean problem 76
 5.2.3 Görtler problem 78
 Exercises ... 88
 References ... 88
 Further Reading 90

6 Some other basic factors of shear-layer stability 91
 6.1 Axial flow symmetry 91
 6.2 Two-dimensional geometry 94
 6.3 Transverse flow periodicity 102
 6.4 Pressure gradients 106
 6.4.1 Streamwise pressure gradient 107
 6.4.2 Transverse pressure gradient 108
 6.5 Heat transfer 112
 6.6 Fluid suction 114
 6.7 Compliant boundaries 115
 6.8 Dusty flow ... 120
 Exercises ... 123
Part III Special topics on linear stability

8 Linear wave packets of instability waves
8.1 Classification of wave packets
8.2 Group velocity
8.3 Experimental investigations of wave packets
Exercises
References
Further Reading

9 Transient disturbances in shear flows
9.1 Lift-up effect
9.2 Growth of optimal disturbances
9.3 Experimental studies
Exercises
References
Further Reading

10 Excitation of shear flow disturbances
10.1 Receptivity problem
10.2 Localized and distributed generation of laminar flow disturbances
10.3 Methodology of receptivity studies
10.3.1 Theoretical approaches
10.3.2 Experimental strategy
10.4 Receptivity of two-dimensional boundary layers
10.4.1 Leading-edge receptivity
10.4.2 Excitation of instability waves at local boundary-layer non-uniformities
10.4.3 Receptivity to localized unsteady disturbances 187
10.4.4 Excitation of instability waves at laminar boundary-layer
 separation .. 189
10.5 Receptivity of a swept-wing boundary layer 190
10.6 Excitation of the Görtler vortices 191
10.7 Excitation of streaky structures 194
 10.7.1 Localized generation of streaks 194
 10.7.2 Distributed generation of streaks 197
References .. 199
Further Reading ... 201

11 Secondary instabilities of shear layers 207
 11.1 Secondary instability in a flow modulated by the Tollmien–Schlichting waves 207
 11.2 Secondary instability in flows modulated by streamwise vortices and streaks 209
 11.3 Local high-frequency secondary instability 215
References .. 217
Further Reading ... 219

Part IV Onset of turbulence 221

12 Nonlinear effects during the laminar–turbulent transition 223
 12.1 Onset of nonlinearity 223
 12.2 Basic nonlinear scenarios 225
 12.2.1 K- and N-regimes of the laminar–turbulent transition 225
 12.2.2 Oblique breakdown 228
 12.2.3 Nonlinearity of locally separating boundary layers 229
 12.3 Transition to turbulence in boundary layers at a high free-stream disturbance level 231
 12.3.1 Linear Tollmien–Schlichting waves in the presence of streaks 233
 12.3.2 Interaction of the streaks with the Tollmien–Schlichting waves 235
References .. 237
Further Reading ... 239

13 Generation of turbulence 243
 13.1 Wave combinations and intermittency 243
 13.2 Turbulent spots 247
 13.2.1 Isolated turbulent spots 247
 13.2.2 Interaction of turbulent spots 250
 13.2.3 Turbulent spots in the presence of other disturbances 252
 13.3 Super-late stage of the transition: ‘Deterministic turbulence’ 253
References .. 255
Further Reading ... 257
A Basic engineering aspects of the laminar–turbulent transition

A.1 Transition prediction ... 259
A.2 Outline of the linear control theory 262
References .. 263
Further Reading ... 264

Index ... 267