Simple Brownian Diffusion

An Introduction to the Standard Theoretical Models

Daniel T. Gillespie & Effrosyni Seitaridou
Contents

1 The Fickian theory of diffusion
1.1 Fick’s Law and the diffusion equation 1
1.2 Some one-dimensional examples 2
1.3 The road ahead 16
Note to Chapter 1 18

2 A review of random variable theory 19
2.1 Probability 19
2.2 Definition of a random variable 20
2.3 Some commonly encountered random variables 21
2.4 Multivariate random variables 24
2.5 Functional transformations of random variables: the RVT theorem 24
2.6 Some useful consequences of the RVT theorem 26
2.7 The bivariate normal random variable 30
2.8 Generating numerical samples of random variables 31
2.9 Integer-valued random variables 34
Notes to Chapter 2 36

3 Einstein’s theory of diffusion 38
3.1 Einstein’s derivation of the diffusion equation 38
3.2 A critique of Einstein’s derivation 40
3.3 Einstein’s new perspective 40
3.4 The covariance and correlation 42
3.5 The relative diffusion coefficient 44
3.6 The probability flux: boundary conditions 45
3.7 The stochastic bimolecular chemical reaction rate: Part I 48
Notes to Chapter 3 54

4 Implications and limitations of the Einstein theory of diffusion 57
4.1 Numerical simulation strategies 57
4.2 A serious problem 63
4.3 Proof of Eqs (4.12) and (4.13) in two dimensions 64
4.4 Implications of Eqs (4.12) and (4.13) 65
4.5 A hint of a quantitative lower bound on Δt in Eqs (4.11) 66
4.6 The small-scale motion of a solute molecule 67
4.7 Collision probability of a solute molecule with a surface 67
4.8 The stochastic bimolecular chemical reaction rate: Part II 71
Notes to Chapter 4 74
Appendix 4A: Proof of the reflecting boundary point simulation procedure 75
Appendix 4B: Proof of the absorbing boundary point simulation procedure 76
Appendix 4C: The Maxwell–Boltzmann distribution 79
5 The discrete-stochastic approach
5.1 Specification of the system
5.2 The key dynamical hypothesis
5.3 Connection to the classical Fickian model
5.4 Connection to the Einstein model
5.5 Constraints on l and δt
5.6 A more accurate formula for κ_t
5.7 The discrete-stochastic model’s version of Fick’s Law
5.8 Does the concentration gradient “cause” diffusion?
5.9 A microfluidics diffusion experiment
Notes to Chapter 5

6 Master equations and simulation algorithms for the
discrete-stochastic approach
6.1 The single-molecule diffusion master equation
6.2 Relation to the Einstein model of diffusion
6.3 Solutions to the single-molecule master equation
6.4 Simulating the discrete-stochastic motion of a single solute molecule
6.5 Some examples of single-molecule simulations
6.6 The many-molecule diffusion master equation
6.7 The case $M = 2$: an exact solution of a different kind
6.8 The moments of the cell populations: recovering the diffusion equation
6.9 Simulating the discrete-stochastic motion of an ensemble of solute molecules
6.10 Some examples of many-molecule simulations
6.11 A simulation study of Fick’s Law
Appendix 6A: General solution to the single-molecule master equation
Appendix 6B: Confidence intervals in Monte Carlo averaging
Appendix 6C: Derivation of the first moment equation (6.31)

7 Continuous Markov process theory
7.1 The Chapman–Kolmogorov and Kramers–Moyal equations
7.2 The process increment and its PDF
7.3 The self-consistency requirement
7.4 Derivation of the Langevin equation
7.5 Implications of the Langevin equation
7.6 The forward Fokker–Planck equation
7.7 Multivariate continuous Markov processes
7.8 The driftless Wiener process
7.9 The Ornstein–Uhlenbeck process
7.10 The time-integral of the Ornstein–Uhlenbeck process
7.11 Numerically simulating the driftless Wiener process
7.12 Numerically simulating the Ornstein–Uhlenbeck process and its integral
7.13 The backward Fokker–Planck equation 168
Notes to Chapter 7 171

8 Langevin’s theory of diffusion 174
8.1 Langevin’s key assumption 174
8.2 A physical rationale for Langevin’s assumption 176
8.3 Fixing the factor f: the fluctuation–dissipation theorem 180
8.4 The Langevin diffusion formulas 181
8.5 The correlation between position and velocity 182
8.6 Two-time auto-correlations 184
Note to Chapter 8 190

9 Implications of Langevin’s theory 192
9.1 The Langevin mean-square displacement formulas 192
9.2 The coefficient of diffusion: the connection to Einstein’s theory 193
9.3 The relaxation time and the characteristic diffusion length 196
9.4 Implications for the discrete-stochastic model of diffusion 197
9.5 The Langevin picture of $V_x(t)$ 199
9.6 The Langevin simulation formulas 200
9.7 Examples of trajectory simulations in the Langevin and Einstein theories 202
9.8 The relative motion of two solute molecules 214
9.9 The velocity auto-covariance formula for D 217
9.10 The energetics of diffusion 219
9.11 Are there “overdamped diffusing systems”? 220
Notes to Chapter 9 222

10 Diffusion in an external force field 224
10.1 The Smoluchowski equation—a Fickian derivation 224
10.2 An application: a rudimentary type of gradient-sensing chemotaxis 226
10.3 The Langevin equation for a solute molecule in an external force field 230
10.4 The Kramers equation 231
10.5 Energetics revisited 233
10.6 Some interesting aspects of the uninteresting limit $\gamma \to 0$ 234
10.7 The large-γ limit: the Smoluchowski equation revisited 236
10.8 A constant external force field in the Langevin picture 239
Notes to Chapter 10 244

11 The first-passage time approach 247
11.1 The basic first-passage time problem 247
11.2 Limitations of the usual simulation approaches 248
11.3 A direct analytical approach 249
11.4 A little help from the backward Fokker–Planck equation 251
11.5 Formulas for the moments of the first-passage time 253
11.6 Explicit solutions for the mean and variance 255