CONTROL OF POWER INVERTERS IN RENEWABLE ENERGY AND SMART GRID INTEGRATION

Qing-Chang Zhong
The University of Sheffield, UK

Tomas Hornik
Turbo Power Systems Ltd., UK
Contents

Preface xvii
Acknowledgments xix
About the Authors xxi
List of Abbreviations xxiii

1 Introduction 1
1.1 Outline of the Book 1
1.2 Basics of Power Processing 4
 1.2.1 AC-DC Conversion 4
 1.2.2 DC-DC Conversion 14
 1.2.3 DC-AC Conversion 18
 1.2.4 AC-AC Conversion 21
1.3 Hardware Issues 24
 1.3.1 Isolation 25
 1.3.2 Power Stages 26
 1.3.3 Output Filters 33
 1.3.4 Voltage and Current Sensing 35
 1.3.5 Signal Conditioning 36
 1.3.6 Protection 38
 1.3.7 Central Controller 38
 1.3.8 Test Equipment 42
1.4 Wind Power Systems 44
 1.4.1 Basics of Wind Power Generation 44
 1.4.2 Wind Turbines 45
 1.4.3 Generators and Topologies 48
 1.4.4 Control of Wind Power Systems 51
1.5 Solar Power Systems 53
 1.5.1 Introduction to Solar Power 53
 1.5.2 Processing of Solar Power 54
1.6 Smart Grid Integration 55
 1.6.1 Operation Paradigms of Power Systems 55
 1.6.2 Introduction to Smart Grids 56
 1.6.3 Requirements for Smart Grid Integration 59
2 Preliminaries

2.1 Power Quality Issues

2.1.1 Introduction

2.1.2 Degradation Mechanisms of Voltage Quality

2.1.3 Role of Inverter Output Impedance

2.2 Repetitive Control

2.2.1 Basic Principles

2.2.2 Poles of the Internal Model \(M(s) \)

2.2.3 Selection of the Delay in the Internal Model

2.3 Reference Frames

2.3.1 Natural \((abc)\) Frame

2.3.2 Stationary Reference \((\alpha\beta)\) Frame

2.3.3 Synchronously Rotating Reference \((dq)\) Frame

2.3.4 The Case with Phase Sequence \(acb\)

PART I POWER QUALITY CONTROL

3 Current \(H^\infty\) Repetitive Control

3.1 System Description

3.2 Controller Design

3.2.1 State-space Model of the Control Plant \(P\)

3.2.2 Formulation of the Standard \(H^\infty\) Problem

3.2.3 Evaluation of the System Stability

3.3 Design Example

3.4 Experimental Results

3.4.1 Synchronisation Process

3.4.2 Steady-state Performance

3.4.3 Transient Response (without a Load)

3.5 Summary

4 Voltage and Current \(H^\infty\) Repetitive Control

4.1 System Description

4.2 Modelling of an Inverter

4.3 Controller Design

4.3.1 Formulation of the \(H^\infty\) Control Problem

4.3.2 Realisation of the Generalised Plant

4.3.3 State-space Realisation of \(T_{ew}\)

4.3.4 State-space Realisation of \(T_{ba}\)

4.4 Design Example

4.5 Simulation Results

4.5.1 Nominal Responses

4.5.2 Response to Load Changes

4.5.3 Response to Grid Distortions

4.6 Summary
Contents

7.5 Simulation Results for R-, L- and C-inverters
- 7.5.1 The Case with \(L = 2.35 \text{ mH} \) 158
- 7.5.2 The Case with \(L = 0.25 \text{ mH} \) 158

7.6 Experimental Results for R-, L- and C-inverters
- 7.6.1 The Case with \(L = 2.35 \text{ mH} \) 160
- 7.6.2 The Case with \(L = 0.25 \text{ mH} \) 161

7.7 Impact of the Filter Capacitor 162

7.8 Summary 163

8 Bypassing Harmonic Current Components 165
- 8.1 Controller Design 165
- 8.2 Physical Interpretation of the Controller 167
- 8.3 Stability Analysis 169
 - 8.3.1 Without Consideration of the Sampling Effect 169
 - 8.3.2 With Consideration of the Sampling Effect 170
- 8.4 Experimental Results 171
- 8.5 Summary 172

9 Power Quality Issues in Traction Power Systems 173
- 9.1 Introduction 173
- 9.2 Description of the Topology 175
- 9.3 Compensation of Negative-sequence Currents, Reactive Power and Harmonic Currents 175
 - 9.3.1 Grid-side Currents before Compensation 175
 - 9.3.2 Compensation of Active and Reactive Power 178
 - 9.3.3 Compensation of Harmonic Currents 179
 - 9.3.4 Regulation of the DC-bus Voltage 179
 - 9.3.5 Implementation of the Compensation Strategy 179
- 9.4 Special Case: \(\cos \theta = 1 \) 180
- 9.5 Simulation Results 181
 - 9.5.1 The Case when \(\cos \theta \neq 1 \) 181
 - 9.5.2 The Case when \(\cos \theta = 1 \) 181
- 9.6 Summary 184

PART II NEUTRAL LINE PROVISION

10 Topology of a Neutral Leg 187
- 10.1 Introduction 187
- 10.2 Split DC Link 188
- 10.3 Conventional Neutral Leg 189
- 10.4 Independently-controlled Neutral Leg 190
- 10.5 Summary 191

11 Classical Control of a Neutral Leg 193
- 11.1 Mathematical Modelling 193
- 11.2 Controller Design 195
Contents

11.2.1 Design of the Current Controller K_i 196
11.2.2 Design of the Voltage Controller K_v 196
11.3 Performance Evaluation 199
11.4 Selection of the Components
11.4.1 Capacitor C_N 201
11.4.2 Inductor L_N 201
11.5 Simulation Results 202
11.5.1 With $i_N = 0$ 202
11.5.2 With a 50 Hz Neutral Current 203
11.5.3 With a 150 Hz Neutral Current 204
11.5.4 With a DC Neutral Current 205
11.6 Summary 205

12 H^∞ Voltage-Current Control of a Neutral Leg 207
12.1 Mathematical Modelling 207
12.2 Controller Design
12.2.1 State-space Realisation of P 211
12.2.2 State-space Realisation of the Closed-loop Transfer Function 213
12.3 Selection of Weighting Functions 214
12.4 Design Example 215
12.5 Simulation Results 216
12.6 Summary 217

13 Parallel PI Voltage-H^∞ Current Control of a Neutral Leg 219
13.1 Description of the Neutral Leg 219
13.2 Design of an H^∞ Current Controller
13.2.1 Controller Description 221
13.2.2 Formulation as a Standard H^∞ Problem 221
13.2.3 State-space Realisation of the Plant P 222
13.2.4 State-space Realisation of the Generalised Plant \tilde{P} 223
13.2.5 Design Example 224
13.3 Addition of a Voltage Control Loop 226
13.4 Experimental Results
13.4.1 Steady-state Performance 227
13.4.2 Transient Response to Changes in the Neutral Current 230
13.5 Summary 230

14 Applications in Single-phase to Three-phase Conversion 233
14.1 Introduction 233
14.2 The Topology under Consideration 236
14.3 Basic Analysis 237
14.4 Controller Design
14.4.1 Synchronisation Unit 239
14.4.2 Control of the Rectifier Leg 241
14.4.3 Control of the Neutral Leg 241
14.4.4 Control of the Phase Legs 242
14.5 Simulation Results
 14.5.1 With Three-phase Linear Balanced Loads 244
 14.5.2 With Three-phase Non-linear Unbalanced Loads 246
14.6 Summary 248

PART III POWER FLOW CONTROL

15 Current Proportional–Integral Control 251
 15.1 Control Structure 251
 15.1.1 In the Synchronously Rotating Reference (dq) Frame 251
 15.1.2 Equivalent Structure in the Natural (abc) Frame 253
 15.2 Controller Implementation 254
 15.3 Experimental Results 254
 15.3.1 Steady-state Performance 254
 15.3.2 Transient Performance 257
 15.4 Summary 258

16 Current Proportional-Resonant Control 259
 16.1 Proportional-resonant Controller 259
 16.2 Control Structure 260
 16.2.1 In the Stationary Reference (αβ) Frame 260
 16.2.2 Equivalent Controller in the abc Frame 261
 16.3 Controller Design 261
 16.3.1 Model of the Plant 261
 16.3.2 Design Example 262
 16.4 Experimental Results 263
 16.4.1 Steady-state Performance 263
 16.4.2 Transient Performance 266
 16.5 Summary 268

17 Current Deadbeat Predictive Control 269
 17.1 Control Structure 269
 17.2 Controller Design 269
 17.3 Experimental Results 271
 17.3.1 Steady-state Performance 272
 17.3.2 Transient Performance 275
 17.4 Summary 275

18 Synchronverters: Grid-friendly Inverters that Mimic Synchronous Generators 277
 18.1 Mathematical Model of Synchronous Generators 278
 18.1.1 Electrical Part 278
 18.1.2 Mechanical Part 280
 18.1.3 Presence of a Neutral Line 281
20.2.1 1:1 Power Sharing 337
20.2.2 2:1 Power Sharing 340
20.3 Summary 346

21 Harmonic Droop Controller to Improve Voltage Quality 347
21.1 Model of an Inverter System 347
21.2 Power Delivered to a Current Source 349
21.3 Reduction of Harmonics in the Output Voltage 351
21.4 Simulation Results 353
21.5 Experimental Results 355
21.6 Summary 358

PART IV SYNCHRONISATION

22 Conventional Synchronisation Techniques 361
22.1 Introduction 361
22.2 Zero-crossing Method 362
22.3 Basic Phase-locked Loops (PLL) 363
22.4 PLL in the Synchronously Rotating Reference Frame (SRF-PLL) 364
22.5 Second-order Generalised Integrator-based PLL (SOGI-PLL) 366
22.6 Sinusoidal Tracking Algorithm (STA) 368
22.7 Simulation Results with SOGI-PLL and STA 369
 22.7.1 With a Noisy Distorted Signal having a Variable Frequency 369
 22.7.2 With a Noisy Distorted Square Wave 372
22.8 Experimental Results with SOGI-PLL and STA 372
 22.8.1 With a Voltage Taken from the Grid 372
 22.8.2 With a Noisy Distorted Signal having a Variable Frequency 375
 22.8.3 With a Noisy Distorted Square Wave 375
22.9 Summary 378

23 Sinusoid-locked Loops 379
23.1 Single-phase Synchronous Machine (SSM) Connected to the Grid 379
23.2 Structure of a Sinusoid-locked Loop (SLL) 380
23.3 Tracking of the Frequency and the Phase 382
23.4 Tracking of the Voltage Amplitude 382
23.5 Tuning of the Parameters 382
23.6 Equivalent Structure 383
23.7 Simulation Results 384
 23.7.1 With a Noisy Distorted Signal having a Variable Frequency 384
 23.7.2 With a Noisy Distorted Square Wave 386
23.8 Experimental Results 386
 23.8.1 With a Voltage Taken from the Grid 386
23.8.2	With a Noisy Distorted Signal having a Variable Frequency	389
23.8.3	With a Noisy Distorted Square Wave	389
23.9	Summary	390

References 393

Index 407