Contents

Contributor contact details xii
Woodhead Publishing Series in Textiles xviii

1 Introduction to natural textile fibres 1
R. M. Kozłowski and M. Mackiewicz-Talarczyk,
Institute of Natural Fibres and Medicinal Plants
(INF&MP), Poland

1.1 Introduction 1
1.2 Historical background of natural fibres 5
1.3 Handbook of natural fibres 6
1.4 Sources of further information and advice 7
1.5 References 8

Part I Fundamentals: types of fibre, properties,
identification and testing 9

2 Cotton fibres 11
M. Dochia and C. Sirghie, 'Aurel Vlaicu' University
of Arad, Romania, R. M. Kozłowski , Institute of Natural
Fibres and Medicinal Plants (INF&MP), Poland and
Z. Roskwitalski, Izba Bawełny Gdynia, Poland

2.1 Introduction 11
2.2 The cotton plant 12
2.3 Cotton fibre structure 13
2.4 Physical properties of cotton 14
2.5 Measuring cotton quality 19
2.6 Future trends 21
2.7 Acknowledgement 22
2.8 References 22

© Woodhead Publishing Limited, 2012
Contents

3 Bast fibres: jute 24
S. Roy and L. B. Lutfar, International Jute Study Group (IJSG), Bangladesh

3.1 Introduction to jute 24
3.2 Types of jute 26
3.3 Fibre morphology 30
3.4 Chemical composition 32
3.5 Properties of jute 35
3.6 Typical applications 39
3.7 Conclusions 41
3.8 Sources of further information and advice 42
3.9 Bibliography 45

4 Bast fibres: ramie 47
S. Roy and L. B. Lutfar, International Jute Study Group (IJSG), Bangladesh

4.1 Introduction to ramie 47
4.2 Types of ramie 49
4.3 Fibre morphology 52
4.4 Properties of ramie 52
4.5 Typical applications 53
4.6 Conclusions 54
4.7 Sources of further information and advice 54
4.8 Bibliography 55

5 Bast fibres: flax 56
R. M. Kozlowski and M. Mackiewicz-Talarczyk, Institute of Natural Fibres and Medicinal Plants (INF&MP), Poland and A. M. Allam, Expert/Advisor, Egypt

5.1 Introduction 56
5.2 Flax plant morphology 61
5.3 Structure and chemical composition of flax 64
5.4 Flax harvesting 67
5.5 Degumming 69
5.6 Scutching 76
5.7 Hackling (combing) 78
5.8 ‘Cottonization’ 80
5.9 Spinning 81
5.10 Bleaching, dyeing 92
5.11 Finishing 98

© Woodhead Publishing Limited, 2012
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Recapitulation</td>
<td>99</td>
</tr>
<tr>
<td>5.13</td>
<td>Conclusions and future trends</td>
<td>101</td>
</tr>
<tr>
<td>5.14</td>
<td>Sources of further information and advice</td>
<td>105</td>
</tr>
<tr>
<td>5.15</td>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>Bast fibres: hemp cultivation and production</td>
<td>114</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>114</td>
</tr>
<tr>
<td>6.2</td>
<td>The hemp plant</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>Hemp cultivation</td>
<td>119</td>
</tr>
<tr>
<td>6.4</td>
<td>Retting</td>
<td>125</td>
</tr>
<tr>
<td>6.5</td>
<td>Fibre extraction</td>
<td>131</td>
</tr>
<tr>
<td>6.6</td>
<td>Hemp fibre spinning</td>
<td>137</td>
</tr>
<tr>
<td>6.7</td>
<td>References</td>
<td>142</td>
</tr>
<tr>
<td>7</td>
<td>Silk fibres</td>
<td>146</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>146</td>
</tr>
<tr>
<td>7.2</td>
<td>Silk industry</td>
<td>147</td>
</tr>
<tr>
<td>7.3</td>
<td>Microstructure and appearance</td>
<td>157</td>
</tr>
<tr>
<td>7.4</td>
<td>Amino acid composition</td>
<td>160</td>
</tr>
<tr>
<td>7.5</td>
<td>Properties of silk</td>
<td>161</td>
</tr>
<tr>
<td>7.6</td>
<td>Applications of silk</td>
<td>164</td>
</tr>
<tr>
<td>7.7</td>
<td>Future trends</td>
<td>167</td>
</tr>
<tr>
<td>7.8</td>
<td>Conclusions</td>
<td>168</td>
</tr>
<tr>
<td>7.9</td>
<td>Sources of further information and advice</td>
<td>169</td>
</tr>
<tr>
<td>7.10</td>
<td>References</td>
<td>169</td>
</tr>
<tr>
<td>8</td>
<td>Wool fibres</td>
<td>171</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>8.2</td>
<td>The effects of the economy on wool</td>
<td>172</td>
</tr>
<tr>
<td>8.3</td>
<td>Wool production</td>
<td>173</td>
</tr>
<tr>
<td>8.4</td>
<td>Chemistry and morphology</td>
<td>175</td>
</tr>
<tr>
<td>8.5</td>
<td>Properties of wool</td>
<td>179</td>
</tr>
<tr>
<td>8.6</td>
<td>Industrial usage of wool</td>
<td>189</td>
</tr>
<tr>
<td>8.7</td>
<td>Branding and consumer friendliness</td>
<td>194</td>
</tr>
<tr>
<td>8.8</td>
<td>References</td>
<td>194</td>
</tr>
</tbody>
</table>
Contents

9 Mohair, cashmere and other animal hair fibres 196
L. Hunter, CSIR and Nelson Mandela Metropolitan University (NMMU), South Africa

9.1 Introduction 196
9.2 Alpaca 202
9.3 Angora rabbit hair 210
9.4 Camel 222
9.5 Cashgora 229
9.6 Cashmere 232
9.7 Guanaco 242
9.8 Llama 244
9.9 Mohair 247
9.10 Musk-ox 266
9.11 Vicuña 269
9.12 Yak 273
9.13 Other animal hair fibres 276
9.14 Acknowledgements 282
9.15 References 282

10 Bioengineered natural textile fibres 291
K. Wielgos, K. Grajek and M. Szalata, Institute of Natural Fibres and Medicinal Plants (INF&MP), Poland and R. Słomski, Poznań University of Life Sciences, Poland

10.1 Introduction 291
10.2 Bacterial cellulose 293
10.3 Enzymatic treatment of cellulose 300
10.4 Future trends 303
10.5 Conclusions 307
10.6 References 308
10.7 Appendix: abbreviations 313

11 Identification of natural textile fibres 314
R. K. Nayak, R. Padhye and S. Fergusson, RMIT University, Australia

11.1 Introduction 314
11.2 Natural textile fibres 315
11.3 Identification methods 319
11.4 Practical approach 338
11.5 Forensic analysis 339
11.6 Future trends 340

© Woodhead Publishing Limited, 2012
14.6 Future trends 501
14.7 Conclusions 503
14.8 Sources of further information and advice 503
14.9 References 503
14.10 Appendix: abbreviations 507

15 Fibre flax cultivation in sustainable agriculture 508
K. Heller, P. Baraniecki and M. Praczyk, Institute of Natural Fibres and Medicinal Plants (INF&MP), Poland
15.1 Introduction to fibre flax for sustainable agriculture 508
15.2 Flax growth cycle 509
15.3 The role of cultivars in sustainable flax cultivation 512
15.4 The importance of crop rotation 513
15.5 Flax cultivation requirements 513
15.6 Flax harvest 523
15.7 Future trends in fibre flax growing for sustainable agriculture 525
15.8 References 527

16 Prevention of fungal growth in natural fibres 532
J. Walentowska Institute of Natural Fibres and Medicinal Plants (INF&MP), Poland and R. M. Kozłowski, Institute for Engineering of Polymer Materials and Dyes (IMPIB), Poland
16.1 Introduction 532
16.2 Key issues of fungal growth, especially mildew, in natural fibres 533
16.3 Methods of preventing fungal growth, especially mildew, in natural fibres 536
16.4 Future trends 541
16.5 Conclusion 546
16.6 Sources of further information and advice 547
16.7 References 547

17 Genetic engineering and biotechnology of natural textile fiber plants 550
K. Wielgus, Institute of Natural Fibres and Medicinal Plants (INF&MP), Poland, M. Szalata, Institute of Natural Fibres and Medicinal Plants (INF&MP), Poland and Poznań University of Life Sciences, Poland and R. Słomski, Poznań University of Life Sciences, Poland
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction: global status of commercialized biotech crops</td>
<td>550</td>
</tr>
<tr>
<td>17.2</td>
<td>Fibrous biotech crops</td>
<td>553</td>
</tr>
<tr>
<td>17.3</td>
<td>Future trends</td>
<td>567</td>
</tr>
<tr>
<td>17.4</td>
<td>Conclusions</td>
<td>569</td>
</tr>
<tr>
<td>17.5</td>
<td>Sources of further information and advice</td>
<td>570</td>
</tr>
<tr>
<td>17.6</td>
<td>References</td>
<td>570</td>
</tr>
<tr>
<td>17.7</td>
<td>Appendix: abbreviations</td>
<td>575</td>
</tr>
<tr>
<td>18</td>
<td>Wild silk: wild silk enterprise programs to alleviate poverty and protect habitats</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>C. L. CRAIG, Harvard University, USA and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation through Poverty Alleviation, International, USA, R. S. WEBER, Conservation through Poverty Alleviation, International, USA and H. AKAI, Tokoyo University of Agriculture, Japan</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>576</td>
</tr>
<tr>
<td>18.2</td>
<td>Definition of silk</td>
<td>577</td>
</tr>
<tr>
<td>18.3</td>
<td>Silk structure and function</td>
<td>582</td>
</tr>
<tr>
<td>18.4</td>
<td>Wild silk enterprise</td>
<td>591</td>
</tr>
<tr>
<td>18.5</td>
<td>Wild silk enterprise versus alternative conservation and poverty alleviation programs in Madagascar</td>
<td>599</td>
</tr>
<tr>
<td>18.6</td>
<td>Conclusion</td>
<td>600</td>
</tr>
<tr>
<td>18.7</td>
<td>References</td>
<td>600</td>
</tr>
</tbody>
</table>

Index | 605 |