DESIGN AND DEVELOPMENT OF AIRCRAFT SYSTEMS
SECOND EDITION

Ian Moir
Moir Associates

Allan Seabridge
Aerospace Systems Consultant
Contents

About the Authors xiii
Series Preface xv
Acknowledgements xvi
Glossary xvii

1 Introduction 1
1.1 General 1
1.2 Systems Development 3
1.3 Skills 7
1.4 Overview 9
References 11
Further Reading 11

2 The Aircraft Systems 13
2.1 Introduction 13
2.2 Definitions 13
2.3 Everyday Examples of Systems 14
2.4 Aircraft Systems of Interest 17
 2.4.1 Airframe Systems 22
 2.4.2 Vehicle Systems 22
 2.4.3 Interface Characteristics of Vehicle Systems 24
 2.4.4 Avionics Systems 25
 2.4.5 Characteristics of Vehicle and Avionics Systems 26
 2.4.6 Mission Systems 26
 2.4.7 Interface Characteristics of Mission Systems 27
2.5 Ground Systems 27
2.6 Generic System Definition 28
References 31
Further Reading 31
3 The Design and Development Process

3.1 Introduction 33
3.2 Definitions 34
3.3 The Product Life Cycle 35
3.4 Concept Phase 39
3.4.1 Engineering Process 40
3.4.2 Engineering Skills 42
3.5 Definition Phase 43
3.5.1 Engineering Process 43
3.5.2 Engineering Skills 44
3.6 Design Phase 47
3.6.1 Engineering Process 47
3.6.2 Engineering Skills 48
3.7 Build Phase 49
3.7.1 Engineering Process 49
3.7.2 Engineering Skills 49
3.8 Test Phase 50
3.8.1 Engineering Process 50
3.8.2 Engineering Skills 50
3.9 Operate Phase 51
3.9.1 Engineering Process 51
3.9.2 Engineering Skills 52
3.10 Disposal or Retirement Phase 52
3.10.1 Engineering Process 52
3.10.2 Engineering Skills 53
3.11 Refurbishment Phase 53
3.11.1 Engineering Process 53
3.11.2 Engineering Skills 53
3.12 Whole Life Cycle Tasks 54
Exercises 55
References 55
Further Reading 56

4 Design Drivers

4.1 Introduction 57
4.2 Design Drivers in the Business Environment 59
4.2.1 Customer 59
4.2.2 Market and Competition 60
4.2.3 Capacity 61
4.2.4 Financial Issues 61
4.2.5 Defence Policy 61
4.2.6 Leisure and Business Interests 62
4.2.7 Politics 62
4.2.8 Technology 63
4.3 Design Drivers in the Project Environment
 4.3.1 Standards and Regulations
 4.3.2 Availability
 4.3.3 Cost
 4.3.4 Programme
 4.3.5 Performance
 4.3.6 Skills and Resources
 4.3.7 Health, Safety and Environmental Issues
 4.3.8 Risk

4.4 Design Drivers in the Product Environment
 4.4.1 Functional Performance
 4.4.2 Human/Machine Interface
 4.4.3 Crew and Passengers
 4.4.4 Stores and Cargo
 4.4.5 Structure
 4.4.6 Safety
 4.4.7 Quality
 4.4.8 Environmental Conditions

4.5 Drivers in the Product Operating Environment
 4.5.1 Heat
 4.5.2 Noise
 4.5.3 RF Radiation
 4.5.4 Solar Energy
 4.5.5 Altitude
 4.5.6 Temperature
 4.5.7 Contaminants/Destructive Substances
 4.5.8 Lightning
 4.5.9 Nuclear, Biological and Chemical
 4.5.10 Vibration
 4.5.11 Shock

4.6 Interfaces with the Sub-System Environment
 4.6.1 Physical Interfaces
 4.6.2 Power Interfaces
 4.6.3 Data Communication Interfaces
 4.6.4 Input/Output Interfaces
 4.6.5 Status/Discrete Data

4.7 Obsolescence
 4.7.1 The Threat of Obsolescence in the Product Life Cycle
 4.7.2 Managing Obsolescence

References
Further Reading

5 Systems Architectures
 5.1 Introduction
 5.2 Definitions
5.3 Systems Architectures
5.3.1 General Systems
5.3.2 Avionic Systems
5.3.3 Mission Systems
5.3.4 Cabin Systems
5.3.5 Data Bus

5.4 Architecture Modelling and Trade-off
5.5 Example of a Developing Architecture
5.6 Evolution of Avionics Architectures
5.6.1 Distributed Analogue Architecture
5.6.2 Distributed Digital Architecture
5.6.3 Federated Digital Architecture
5.6.4 Integrated Modular Architecture

References
Further Reading

6 Systems Integration
6.1 Introduction
6.2 Definitions
6.3 Examples of Systems Integration
6.3.1 Integration at the Component Level
6.3.2 Integration at the System Level
6.3.3 Integration at the Process Level
6.3.4 Integration at the Functional Level
6.3.5 Integration at the Information Level
6.3.6 Integration at the Prime Contractor Level
6.3.7 Integration Arising from Emergent Properties

6.4 System Integration Skills
6.5 Management of Systems Integration
6.5.1 Major Activities
6.5.2 Major Milestones
6.5.3 Decomposition and Definition Process
6.5.4 Integration and Verification Process
6.5.5 Component Engineering

6.6 Highly Integrated Systems
6.6.1 Integration of Primary Flight Control Systems

6.7 Discussion
References
Further Reading

7 Verification of System Requirements
7.1 Introduction
7.2 Gathering Qualification Evidence in the Life Cycle
7.3 Test Methods
7.3.1 Inspection of Design
7.3.2 Calculation

References
Further Reading
7.3.3 Analogy 144
7.3.4 Modelling and Simulation 144
7.3.5 Test Rigs 158
7.3.6 Environmental Testing 159
7.3.7 Integration Test Rigs 159
7.3.8 Flight Test 161
7.3.9 Trials 162
7.3.10 Operational Test 163
7.3.11 Demonstrations 163
7.4 An Example Using a Radar System 163
References 166
Further Reading 166

8 Practical Considerations 167
8.1 Introduction 167
8.2 Stakeholders 167
8.2.1 Identification of Stakeholders 167
8.2.2 Classification of Stakeholders 169
8.3 Communications 170
8.3.1 The Nature of Communication 171
8.3.2 Examples of Organisation Communication Media 173
8.3.3 The Cost of Poor Communication 174
8.3.4 A Lesson Learned 174
8.4 Giving and Receiving Criticism 177
8.4.1 The Need for Criticism in the Design Process 177
8.4.2 The Nature of Criticism 178
8.4.3 Behaviours Associated with Criticism 178
8.4.4 Conclusions 179
8.5 Supplier Relationships 179
8.6 Engineering Judgement 181
8.7 Complexity 181
8.8 Emergent Properties 182
8.9 Aircraft Wiring and Connectors 183
8.9.1 Aircraft Wiring 183
8.9.2 Aircraft Breaks 183
8.9.3 Wiring Bundle Definition 185
8.9.4 Wiring Routing 185
8.9.5 Wiring Sizing 186
8.9.6 Aircraft Electrical Signal Types 187
8.9.7 Electrical Segregation 188
8.9.8 The Nature of Aircraft Wiring and Connectors 189
8.9.9 Use of Twisted Pairs and Quads 190
8.10 Bonding and Grounding 192
References 194
Further Reading 194
11 Power Systems Issues

11.1 Introduction

11.2 Electrical System Description

11.3 Electrical Power Distribution System

11.3.1 Power Generation

11.3.2 Primary Power Distribution

11.3.3 Power Conversion

11.3.4 Secondary Power Distribution

11.4 Electrical System Design Issues

11.4.1 Engine Power Off-Takes

11.4.2 The Generator

11.4.3 Power Feeders

11.4.4 Generation Control

11.4.5 Power Switching

11.5 Hydraulic System Description

11.5.1 Engine-Driven Pump (EDP)

11.5.2 Hydraulic Accumulator

11.5.3 System Users

11.5.4 Power Transfer Unit

11.6 Hydraulic System Design Considerations

11.6.1 Hydraulic Power Generation

11.6.2 System Level Issues

11.6.3 Hydraulic Fluid

11.7 Aircraft System Energy Losses

11.8 Electrical System Power Dissipation

11.8.1 Constant Frequency System

11.8.2 Variable Frequency System

11.9 Hydraulic System Power Dissipation

11.9.1 Hydraulic Power Calculations

11.9.2 Operating Pressure

11.9.3 Rated Delivery Capacity

11.9.4 Boeing 767 – Entry into Service: 1982 (United Airlines)

11.9.5 Boeing 787 – Entry into Service: 2011 [All Nippon Airways]

11.9.6 Simple Hydraulic Power Models

11.10 More-Electric Aircraft Considerations

References

12 Key Characteristics of Aircraft Systems

12.1 Introduction

12.2 Aircraft Systems

12.3 Avionic Systems

12.4 Mission Systems

12.5 Sizing and Scoping Systems
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6 Analysis of the Fuel Penalties of Aircraft Systems</td>
<td>294</td>
</tr>
<tr>
<td>12.6.1 Introduction</td>
<td>294</td>
</tr>
<tr>
<td>12.6.2 Basic Formulation of Fuel Weight Penalties of Systems</td>
<td>295</td>
</tr>
<tr>
<td>12.6.3 Application of Fuel Weight Penalties Formulation to Multi-Phase Flight</td>
<td>297</td>
</tr>
<tr>
<td>12.6.4 Analysis of Fuel Weight Penalties Formulation for Multi-Phase Flight</td>
<td>298</td>
</tr>
<tr>
<td>12.6.5 Use of Fuel Weight Penalties to Compare Systems</td>
<td>298</td>
</tr>
<tr>
<td>12.6.6 Determining Input Data for Systems Weight Penalties Analysis</td>
<td>299</td>
</tr>
<tr>
<td>Nomenclature Used</td>
<td>302</td>
</tr>
<tr>
<td>References</td>
<td>303</td>
</tr>
<tr>
<td>13 Conclusions</td>
<td>305</td>
</tr>
<tr>
<td>A Historical Footnote</td>
<td>306</td>
</tr>
<tr>
<td>References</td>
<td>307</td>
</tr>
<tr>
<td>Index</td>
<td>309</td>
</tr>
</tbody>
</table>