CONTENTS

Figure Credits	ix
Acknowledgments	xi
Introduction	xiii

CHAPTER 1 CLIMATE-BASED DESIGN APPROACH FOR FACADES 1

- Climate Classifications and Types 3
- Climate-Specific Design Guidelines for Facades 8
 - Environmental Considerations and Design Criteria 8
 - Design Strategies and Climate 9
- Chapter Summary 14

CHAPTER 2 CHARACTERISTICS OF SUSTAINABLE FACADES 17

- Energy Efficiency 18
 - Orientation 19
 - Fenestration 24
- Facade Types and Materials 40
 - Opaque Building Facades 40
 - Glazed Building Facades 48
- Materials and Properties 54
 - Properties of Facade Materials and Components 54
 - Embodied Energy of Materials 62
- Thermal Behavior and Moisture Resistance 66
 - Control of Heat Transfer, and Air and Moisture Movement 66
- Steady-State Heat and Moisture Transfer Analysis for Opaque Building Facades 69
- Hygrothermal Analysis for Opaque Building Facades 74
- Heat Transfer Analysis for Glazed Building Facades 79
- Chapter Summary 83
CHAPTER 3 DESIGNING FOR COMFORT

Thermal Comfort 86
Methods of Measurement 87
Facade Design and Thermal Comfort 91
Daylight and Glare 95
Daylighting Strategies 95
Glare 109
Acoustic Comfort and Air Quality 115
Acoustics 115
Air Quality 118
Chapter Summary 119

CHAPTER 4 EMERGING TECHNOLOGIES IN FACADE DESIGNS 121

Emerging Materials and Technologies 122
Advanced Facade Materials 122
Smart Materials 126
Double-Skin Facades 135
Double-Skin Facades in Hot and Arid Climates 141
Double-Skin Facades in Cold Climates 143
Facades as Energy Generators 149
Control Systems for Facades 153
Chapter Summary 155

CHAPTER 5 CASE STUDIES 157

Building Orientation and Facade Design 159
Arizona State University Interdisciplinary Science & Technology Building 159
Center for Urban Waters 167
Tectonic Sun Exposure Control 178
Kuwait University College of Education 178
King Abdullah Financial District Parcel 4.01 Building 186
King Abdullah Financial District Parcel 4.10 Building 200
External Shading Elements 211
University of Texas Dallas Student Services Building 211
Facade Materials and Wall Assemblies 218
Bigelow Laboratory for Ocean Sciences 218
APPENDIX

CASE STUDIES INDEX 227

Chapter 2 228

Case Study 2.1: Vincent Triggs Elementary School, Clark County Elementary Prototype (Las Vegas, Nevada) 228
Case Study 2.2: Hector Garcia Middle School (Dallas, Texas) 228
Case Study 2.3: Kendal Academic Support Center, Miami Dade College (Miami, Florida) 229

Chapter 3 229

Case Study 3.1: Centers for Disease Control and Prevention, National Center for Environmental Health (Atlanta, Georgia) 229

Chapter 4 230

Case Study 4.1: Princess Nora Bint Abdulrahman University for Women Academic Colleges (Riyadh, Saudi Arabia) 230
Case Study 4.2: Tinkham Veale University Center, Case Western Reserve University (Cleveland, Ohio) 230

Chapter 5 231

Interdisciplinary Science & Technology Building, Arizona State University (Tempe, Arizona) 231
Center for Urban Waters (Tacoma, Washington) 232
Kuwait University College of Education (Shadadiyah, Kuwait) 232
King Abdullah Financial District Parcel 4.01 Building (Riyadh, Saudi Arabia) 233
King Abdullah Financial District Parcel 4.10 Building (Riyadh, Saudi Arabia) 233
University of Texas Dallas Student Services Building (Dallas, Texas) 234
Bigelow Laboratory for Ocean Sciences (East Boothbay, Maine) 234

Index 235