Contents

Preface XVII
List of Contributors XIX

Part I Central Metabolism 1
1 Metabolic Profiling of Plants by GC–MS 3
Camilla B. Hill and Ute Roessner
1.1 Introduction 3
1.2 Methods and Protocols 7
1.2.1 Sample Preparation 7
1.2.1.1 Sampling 7
1.2.1.2 Homogenization and Extraction 7
1.2.1.3 Procedure for Polar Extraction of Metabolites 8
1.2.2 Chemical Derivatization: Methoxymation and Silylation 9
1.2.2.1 Procedure for the Chemical Derivatization of Plant Extracts 9
1.2.3 GC–MS Analysis 10
1.2.3.1 Procedure to Acquire GC–MS Data 11
1.2.4 Data Preprocessing and Export 12
1.2.4.1 Procedure for Postacquisition Data Preprocessing 12
1.2.4.2 Data Analysis and Statistics 14
1.2.4.3 Procedure for Postacquisition Data Analysis 15
1.3 Applications of the Technology 15
1.4 Perspectives 17
References 18

2 Isotopologue Profiling – Toward a Better Understanding of Metabolic Pathways 25
Wolfgang Eisenreich, Claudia Huber, Erika Kutzner, Nihat Knispel, and Nicholas Schramek
2.1 Introduction 25
2.2 Methods and Protocols to Determine Isotopologues 31
2.2.1 Mass Spectrometry 31
2.2.2 Protocols for Isotopologue Profiling by GC–MS 36
3 Nuclear Magnetic Resonance Spectroscopy for Plant Metabolite Profiling 57
Sonia van der Sar, Hye Kyong Kim, Axel Meissner, Robert Verpoorte, and Young Hae Choi

3.1 Introduction 57
3.2 Methods and Protocols 59
3.2.1 Sample Preparation 59
3.2.1.1 Harvesting Plant Material 60
3.2.1.2 Drying 60
3.2.1.3 Extraction 60
3.2.2 Data Acquisition 60
3.2.3 Standard 1H-NMR Spectroscopy 61
3.2.4 J-Resolved Spectroscopy 61
3.2.5 Data Analysis 61
3.3 Applications 62
3.3.1 1D 1H-NMR Spectroscopy 62
3.3.2 2D NMR Spectroscopy 63
3.3.2.1 J-Resolved Spectroscopy 65
3.3.2.2 COSY and TOCSY 67
3.3.2.3 HMBC and HMQC/HSQC 68
3.3.2.4 NOESY or ROESY (CAMELSPIN) 69
3.3.2.5 DOSY 69
3.3.3 Magic Angle Spinning 70
3.4 Perspectives 71
3.5 References 72

4 Comprehensive Two-Dimensional Gas Chromatography for Metabolomics 77
Katja Dettmer, Martin F. Almstetter, Christian J. Wachsmuth, and Peter J. Oefner

4.1 Introduction 77
4.2 Methods and Protocols 81
4.2.1 Instrumentation 81
4.2.2 Sample Preparation and Analysis 82
4.2.3 Data Processing 83
4.2.4 Metabolic Fingerprinting 83
4.2.5 Quantitative Analysis of Selected Metabolites 84
4.3 Applications of the Technology 85
4.3.1 Data Analysis 85
4.3.2 Literature 88
4.4 Perspectives 89
References 90

5 MALDI Mass Spectrometric Imaging of Plants 93
Aleš Svatos and Hans-Peter Mock
5.1 Introduction 93
5.1.1 Sample Preparation 96
5.1.2 Data Acquisition 98
5.1.3 Data Processing 98
5.2 Methods and Protocols 99
5.2.1 Sample Preparation and Handling 99
5.2.1.1 Intact Tissues 99
5.2.1.2 Cryosectioning 99
5.2.2 Matrix Deposition 100
5.2.2.1 Paintbrush (Figure 5.2) 100
5.2.2.2 Sublimation (Figure 5.3) 102
5.2.3 MALDI-MS Imaging Measurement 103
5.2.3.1 Bruker Ultraflex Instruments 103
5.2.3.2 Waters MALDI Micro MX 104
5.3 Imaging Intact Tissues and Objects 105
5.4 Future Perspectives 109
References 109

6 Medicago truncatula Root and Shoot Metabolomics: Protocol for the Investigation of the Primary Carbon and Nitrogen Metabolism Based on GC-MS 111
Vlora Mehmeti, Lena Fragner, and Stefanie Wienkoop
6.1 Introduction 111
6.2 Methods and Protocols 112
6.2.1 Equipment and Software 112
6.2.2 Buffers and Chemicals 112
6.2.3 Plant Material and Harvest 113
6.2.4 Extraction 114
6.2.5 Derivatization 115
6.2.6 GC-MS Setup for the Analysis 115
6.2.7 Metabolite Identification and Quantification: Data Matrix Processing 116
7 Study of the Volatile Metabolome in Plant–Insect Interactions 127

Georg J.F. Weingart, Nora C. Lawo, Astrid Forneck, Rudolf Kraska, and Rainer Schuhmacher

7.1 Introduction 127
7.1.1 Plant–Insect Interactions 127
7.1.2 Significance of Volatile Plant Metabolites 128
7.1.3 Study of the Plant Volatile Metabolome in Plant–Insect Interactions 128
7.1.3.1 Setting Up of Biological Experiments 129
7.1.3.2 Sampling, Quenching, and Sample Preparation 130
7.1.3.3 Headspace Extraction and Measurement by GC–MS 131
7.1.3.4 Data Handling 134
7.1.3.5 Biological Interpretation 135
7.2 Methods and Protocols 135
7.2.1 Permanent Breed of Insects 135
7.2.2 Cultivation of Grapevine Plants and Inoculation with Phylloxera 136
7.2.2.1 Materials 136
7.2.2.2 Procedures 136
7.2.3 Sampling and Quenching of Plant Tissue (Roots and Leaves) 138
7.2.3.1 Sampling and Quenching of Root Tips 138
7.2.3.2 Sampling and Quenching of Grapevine Leaves 139
7.2.4 Milling and Weighing of Plant Tissue (Roots and Leaves) 140
7.2.4.1 Milling and Weighing of Root Samples 140
7.2.4.2 Milling and Weighing of Leaf Samples 141
7.2.5 Measurement – Automated HS-SPME Extraction and GC–MS Analysis 143
7.2.5.1 Materials 143
7.2.5.2 SPME Method 143
7.2.5.3 GC Method 144
7.2.5.4 MS Settings 144
7.2.6 Data Processing with AMDIS 145
7.2.6.1 An In-House Reference Library Has to be Established in Advance 145
7.2.6.2 Generation of RI Calibration File 146
7.2.6.3 Batch Job Analysis for the Simultaneous Processing of Multiple Sample Chromatograms 146
7.2.7 Statistics/Chemometrics 147
7.2.7.1 Univariate Statistics 147
7.2.7.2 Multivariate Statistics 148
8 Metabolomics in Herbal Medicine Research 155
Lie-Fen Shyur, Chiu-Ping Liu, and Shih-Chang Chien

8.1 Introduction 155
8.2 Methods and Protocols 158
8.2.1 Materials 158
8.2.1.1 Reagents 158
8.2.1.2 Equipment 159
8.2.2 Procedures 160
8.2.2.1 Sample Handling for Medicinal Plants 160
8.2.2.2 Sample Preparation for LC–MS Analysis 160
8.2.2.3 LC–MS Analysis 161
8.2.2.4 HPLC–Photodiode Array (PDA) MS Setup and Analysis 161
8.2.2.5 GC–MS Analysis 162
8.2.2.6 Plant Extract Preparation for GC–MS Analysis 163
8.2.2.7 GC–MS Parameters and Analysis 164
8.2.2.8 LC–MS and GC–MS Data Analysis 165
8.2.2.9 LC–SPE–NMR Analysis 166
8.2.2.10 Sample Preparation and LC–SPE–NMR Analysis 167
8.2.2.11 HPLC–SPE–NMR Data Analysis 168
8.3 Applications 168
8.4 Perspectives 169
References 170

9 Integrative Analysis of Secondary Metabolism and Transcript Regulation in Arabidopsis thaliana 175
Fumio Matsuda and Kazuki Saito

9.1 Introduction 175
9.2 Methods and Protocols 177
9.2.1 Metabolome Analysis of Plant Secondary Metabolites 177
9.2.1.1 Sample Preparation 177
9.2.1.2 Data Acquisition 178
9.2.1.3 Preparation of Metabolite Accumulation Data from the Raw Chromatogram Data 179
9.2.2 Preparation of Combined Data Matrix 180
9.2.2.1 Preparation of Gene Expression Data 180
9.2.2.2 Combination of Data Matrices 180
9.2.3 Data Mining 180
9.2.3.1 BL-SOM Analysis 180
9.2.3.2 Correlation Analysis 181
9.2.3.3 Principal Component Analysis and Application of Other Data Mining Techniques 183
10 Liquid Chromatographic–Mass Spectrometric Analysis of Flavonoids 197
Maciej Stobiecki and Piotr Kachlicki
10.1 Introduction 197
10.1.1 Role of Flavonoids and Their Derivatives in Biological Systems 197
10.1.2 Preparation of Biological Material for Metabolomic Analysis and/or Metabolite Profiling 199
10.1.3 Instrumental Considerations 201
10.2 Methods and Protocols: Liquid Chromatography–Mass Spectrometry of Flavonoids 206
10.2.1 General Remarks 206
10.2.2 Plant Cultivation Conditions 208
10.2.3 Preparation of Biological Material with Biotechnological Methods (Callus, Cell, or Hairy Root Cultures) 208
10.2.4 Extraction of Plant Tissue or Biotechnologically Prepared Material 208
10.2.4.1 Extraction Procedure 209
10.2.5 Solid-Phase Extraction of Culture Medium or Apoplastic Fluids 209
10.2.6 Preparation of Samples for LC–MS Analyses 210
10.2.7 Chromatographic Protocols for Separation of Flavonoid Glyconjugates 210
10.2.8 Control of Ionization Parameters During Mass Spectrometric Analysis and Identification of Compounds During LC–MS Metabolite Profiling 211
10.3 Applications of the Technology 211
10.4 Perspectives 211
References 222

11 Introduction to Lipid (FAME) Analysis in Algae Using Gas Chromatography–Mass Spectrometry 215
Takeshi Furuhashi and Wolfram Weckwerth
11.1 Introduction 215
11.2 Methods and Experimental Protocol 216
11.2.1 Extraction 216
11.2.2 Bound and Free Fatty Acids 217
11.2.3 Pigments 217
11.2.4 Contaminants 219
11.2.5 Derivatization 219
11.2.6 GC–MS System 220
11.2.7 Identification 220
11.2.8 Protocols 221
11.2.8.1 Protocol 1 221
12 Multi-Gene Transformation for Pathway Engineering of Secondary Metabolites 227
Hideyuki Suzuki, Eiji Takita, Kiyoshi Ohyama, Satoru Sawai, Hikaru Seki, Nozomu Sakurai, Toshiya Muranaka, Masao Ishimoto, Hiroshi Sudo, Kazuki Saito, and Daisuke Shibata

12.1 Introduction 227
12.2 Methods and Protocols 233
12.2.1 Chemicals 233
12.2.2 Plasmid Construction of Multi-Gene Transformation 233
12.2.3 Preparation of Dual Terminator (DT) Fragment by PCR-Based Overlap Extension Method 233
12.2.4 Plasmid Construction of pUHR KS CSPS Thsp 236
12.2.5 Construction of pHSG299 CSPS 35S-CYP88-DT (Figure 12.2a) 236
12.2.6 Construction of pHSG299 CSPS 35S-CYP72-DT2 (Figure 12.2a) 237
12.2.7 Construction of pHSG299-CYP93(RNAi)-DT (Figure 12.2a) 238
12.2.8 Construction of pUHR KS CSPS Thsp-CYP88-CYP72-CYP93(RNAi) 239
12.2.9 Transformation of Soybean by Particle Bombardment 239
12.2.9.1 Preparation of Embryogenic Suspension Tissue Culture 239
12.2.9.2 Preparation of Plasmid DNA for Particle Bombardment 240
12.2.9.3 Conditions of Particle Bombardment 240
12.2.9.4 Selection and Generation of Transgenic Soybean Plants 240
12.2.10 GC-MS Analysis for Triterpene Glycone 241
12.2.10.1 Extraction of Metabolite 241
12.2.10.2 Acid Treatment of Extracted Metabolites 241
12.2.10.3 Derivatization of Metabolites 242
12.2.11 GC-MS Conditions 242
12.3 Application of Technology 242
12.4 Perspectives 243
References 243

13 Metabolomics-Assisted Plant Breeding 247
Alexander Herrmann and Nicolas Schauer

13.1 Introduction 247
13.2 Method 249
13.3 Applications of the Technology 251
13.4 Perspective 253
References 254
Contents

Part IV Metabolomics and Bioinformatics 273

15 Metabolite Clustering and Visualization of Mass Spectrometry Data Using One-Dimensional Self-Organizing Maps 275
Alexander Kaever, Manuel Landesfeind, Kirstin Feussner, Ivo Feussner, and Peter Meinicke

15.1 Introduction 275
15.2 Methods and Protocols 276
15.2.1 Data Import 277
15.2.2 Clustering 277
15.2.3 Cluster Analysis 280
15.3 Applications of the Technology 281
15.4 Perspectives 286
References 286
16 Metabolite Identification and Computational Mass Spectrometry 289
Steffen Neumann, Florian Rasche, Sebastian Wolf, and Sebastian Böcker

16.1 Introduction 289
16.2 Annotation and Identification of Metabolites 290
16.2.1 Exact Mass Search in Compound Libraries 291
16.2.2 Deriving the Elemental Composition from MS^1 292
16.2.3 Elemental Composition from MS^2 and MS^n 293
16.2.4 *In Silico* Library Search with MetFrag 294
16.2.5 Reference Spectral Library Lookup 299
16.3 Perspectives 302
References 303

17 Using COVAIN to Analyze Metabolomics Data 305
Xiaoliang Sun and Wolfram Weckwerth

17.1 Introduction 305
17.2 Methods 308
17.2.1 Data Preprocessing 308
17.2.1.1 Imputation of Missing Values 308
17.2.1.2 Transformations to Satisfy Prerequisites of Statistical Methods 310
17.2.1.3 Adjusting Outliers 310
17.2.1.4 Scaling 310
17.2.1.5 Filtering by Statistical Features 310
17.2.2 Uni- and Bivariate Statistical Methods for Individual Metabolite-Level Analysis 311
17.2.2.1 ANOVA Compares Single Metabolite Levels 311
17.2.2.2 Correlation Coefficients Interpret the Relationships Between Pairwise Two Metabolites 311
17.2.2.3 Granger Causality Analysis Identifies the Causation Between Pairwise Two Metabolites in Time-Series Data 311
17.2.3 Multivariate Statistical Methods for Group-Level Analysis 312
17.2.3.1 PCA Distinguishes Phenotypes and Finds Most Influencing Metabolites 312
17.2.3.2 Independent Component Analysis Distinguishes Phenotypes and Finds the Latent Sources of Metabolites in Time-Series Data 312
17.2.3.3 Clustering Classifies Data Into Groups 312
17.2.4 Network-Level Analysis 313
17.2.4.1 Network Mapping 313
17.2.4.2 Network Inference 313
17.2.5 Influences of Data Preprocessing on Statistical Analysis Results 313
17.2.5.1 On the Mean Values: ANOVA, Correlation Coefficient, Granger Analysis, and Clustering 313
17.2.5.2 On the Variance and Covariance: ANOVA, PCA, and ICA 314
17.3 Application 314
17.4 Perspective 320
References 320