Contents

Preface xxix
Acknowledgments xxxiii

Part I Self-Assembled Monolayers

1. Self-Assembled Monolayers: A Versatile Tool for Biofunctionalization of Surfaces 3
 Atul N. Parikh and David L. Allara
 1.1 Introduction 4
 1.2 Self-Assembly Mechanisms 8
 1.2.1 Thermodynamic Considerations 8
 1.2.2 Kinetic Considerations 11
 1.3 Spatial Patternability 14
 1.3.1 Top-Down Lithographies and Direct-Write Techniques 15
 1.3.1.1 Microcontact printing 15
 1.3.1.2 Dip-pen nanolithography 17
 1.3.1.3 Beam-induced patterning 17
 1.3.2 Bottom-Up Chemical Strategies 18
 1.3.2.1 Mixed-composition SAM phase segregation 18
 1.3.2.2 Insertion and displacement of invader guest molecules with host SAM molecules 19
 1.4 Biologically Relevant Surface Functionalization 19
 1.4.1 Protein-Repellent Biologically Inert Surfaces 19
 1.4.2 Ligand-Displaying SAMs 21
 1.4.3 Membrane-Templating SAMs 23
 1.5 Summary 24

2. Gemini SAMs 31
 Kaoru Tamada and Shinobu Yokokawa
 2.1 Introduction 32
 2.2 Basic Characteristics of Gemini-Structured SAMs 37
3. Physical Chemistry of Nonfouling Oligo
(Ethylene Oxide)-Terminated Self-Assembled
Monolayers

Michael Grunze

3.1 Introduction
3.2 A Survey of Physicochemical Surface Properties Relevant for Biofouling
3.3 Surface Energy
3.4 Charge
3.5 Steric Repulsion by Polymer Brushes
3.6 Preparation of OEG-Terminated Alkanethiolate SAMs and Their Characterization
3.7 Stability of OEG and PEG Coatings
3.8 OEG SAMs on Other Substrates
3.9 Mechanisms of “Inertness” of OEG SAMs
3.10 Hydration of Oligo(Ethylene Oxide)
3.11 The Thermodynamic Perspective
3.12 Conclusions

4. Electrochemically Designed Self-Assembled Monolayers for the Selective Immobilization and Release of Ligands, Proteins, and Cells

Omar Azzaroni and Roberto C. Salvarezza

4.1 Introduction
4.2 Electrochemistry of Thiol Self-Assembled Monolayers on Metal Surfaces
4.2.1 Electrochemical Stability of Self-Assembled Monolayers
4.2.2 Charge Transfer through Self-Assembled Monolayers
4.3 Controlling Biological Activity Using Electroactive Self-Assembled Monolayers
4.3.1 The Diels-Alder Reaction in Two Dimensions
4.3.2 Electroreductive Release of Ligands from Redox-Active SAMs
4.3.3 Electro-Oxidative Release of Ligands from Redox-Active SAMs
4.3.4 Dynamic Control over Cell Adhesion Using Ligands Tethered to Redox-Active SAMs
4.3.5 Tethering of Ligands to Electroactive SAMs through the Formation of Oxime Linkages
4.3.6 Photochemistry as a Tool to Control the Spatial Distribution of Electroactive Groups
4.3.7 Electrochemical Deprotection of "Caged" Ligands Immobilized on Self-Assembled Monolayers
4.3.8 Electrochemical Cleavage of Azo Linkages for Site-Selective Immobilization of Biofunctional Units
4.4 Controlling the Release of Bioactive Elements by Electrochemical Desorption of Self-Assembled Monolayers
4.4.1 Reductive Electrodesorption of Self-Assembled Monolayers as a Strategy to Release Cells and Proteins from Surfaces
4.5 Conclusions

5. OM-CVD on Patterned SAMs
Silvia Mittler
5.1 Introduction
5.2 OM-CVD of Cu onto Patterned MPTS and SAMs on OTS as a Blocking Resist
5.3 OM-CVD of Pd and Pt onto Patterned OTS SAMs as a Blocking Resist
5.4 OM-CVD-Grown Au on Stamped SAMs on Au/Mica
5.5 OM-CVD-Grown Gold NPs in Rows on SNOM Nanolithographically Manipulated HDT SAMs on Au
5.6 OM-CVD-Grown Au NPs on Cu− Ion Patterned OTS SAMs on Oxidized Silicon Wafers
5.7 OM-CVD-Grown Au NPs on Ga⁺ Ion FIB-Patterned OTS SAMs on Oxidized Silicon Wafers 155
5.8 OM-CVD-Grown Au NPs on Ga⁺ Ion FIB-Patterned OTS SAMs on Oxidized Silicon Wafers with Additional Density Control due to the Application of a Binary Mixed Refilled SAM 162
5.9 OM-CVD-Grown Au NPs on Ga⁺ Ion FIB-Patterned OTS SAMs on SiO₂/ITO/Glass and Directly on Glass 165
5.10 Conclusion 168

Part II Brushes, Dendrimers, Networks

6. Modification of Glass Surfaces by Phosphorus Dendrimer Layers for Biosensors 179
Anne-Marie Caminade and Jean-Pierre Majoral
6.1 Introduction 179
6.2 Modification of Inorganic Surfaces by Phosphorus Dendrimers 183
6.2.1 Covalent Modification of Inorganic Surfaces 183
6.2.2 Noncovalent Modification of Inorganic Surfaces 189
6.3 Chemical Sensors Based on Phosphorus Dendrimers 193
6.4 Biosensors Based on Phosphorus Dendrimers 198
6.4.1 Biosensors Based on the Covalent Immobilization of Dendrimers on Surfaces 198
6.4.2 Biosensors Based on Electrostatic Immobilization of Dendrimers on Surfaces 202
6.5 Conclusion 207

7. Biofunctional Dendrons Grafted on a Surface 215
Young-Eun Choi and Joon Won Park
7.1 Introduction 215
7.2 Self-Assembly of Dendrons through Covalent Bonds 218
7.2.1 Application for DNA Microarrays 218
7.2.2 Application for Force-Based AFM 226
 7.2.2.1 Force-based detection of DNA hybridization events 227
 7.2.2.2 Intermolecular interaction between signal-transducing proteins 227
 7.2.2.3 Equilibrium state of a foldamer, a protein model 234
 7.2.2.4 mRNA distribution mapping at the single-molecular level 237
 7.2.2.5 A single-molecular probe on the atomic force microscope tip 239
 7.2.2.6 “Seeing and counting” individual antigens on the surface 244
7.2.3 Other Applications 246
 7.2.3.1 Streptavidin-biotin interaction investigation by SPR 246
 7.2.3.2 Controlled pore glass beads 248
 7.2.3.3 DNA-DNA interaction observation with SPFS 250
 7.2.3.4 Dendron-modified polystyrene microtiter plate 252
 7.2.3.5 DNA detection with electrochemical impedance spectroscopy 256
7.3 Self-Assembly of a Dendron through a Noncovalent Bond 258
 7.3.1 Self-Assembly of a Dendron through Multiple Ionic Attraction 259
 7.3.2 Carbon Nanotube Functionalization 261
7.4 Conclusion 265

8. Surface-Attached Polymeric Hydrogel Films 277
 Ulrich Jonas, Coenraad R. van den Brom, Annette Brunsen, and Robert F. Roskamp
8.1 Introduction 278
 8.1.1 What Are Hydrogels? 278
 8.1.2 3D Hydrogels 280
8.1.3 Microgels 281
8.1.4 Polymer Brush Layers 281
8.1.5 Surface-Attached Hydrogel Networks 282

8.2 Hydrogel Systems 283
8.2.1 Chemical Structures of Hydrogel Polymers 283
 8.2.1.1 The main monomer 284
 8.2.1.2 Cross-linkers 289
 8.2.1.3 Functional groups 296
 8.2.1.4 Hydrogel-nanoparticle hybrid systems 297
8.2.2 Surface Attachment Strategies 300
 8.2.2.1 The "grafting from" method 301
 8.2.2.2 The "grafting to" method 303
8.2.3 The Coating Process 306

8.3 Structure and Properties of Hydrogel Layers 307
8.3.1 Morphological Structure of the Hydrogel Material 308
8.3.2 Swelling 314
 8.3.2.1 Static swelling ratio 316
 8.3.2.2 Swelling kinetics 319
8.3.3 Diffusion 320
8.3.4 Specific Responsiveness 322

8.4 Applications 328
8.4.1 Actuators, Valves, and Pumps 328
 8.4.1.1 Actuators 329
 8.4.1.2 Valves 331
 8.4.1.3 Pumps 334
8.4.2 Biomedical Applications 336
 8.4.2.1 Biosensing 336
 8.4.2.2 Tissue engineering and cell adhesion 339
 8.4.2.3 Other biomedical applications 342
8.4.3 Purification and Separation 343
8.5 Conclusion and Outlook 345

9. Evanescent Wave Biosensors with a Hydrogel Binding Matrix 361

Jakub Dostalek, Yi Wang, Chun Jen Huang, and Wolfgang Knoll

9.1 Introduction 362
9.2 Key Characteristics of Hydrogel Binding Matrices

9.2.1 Swelling Properties

9.2.2 Antifouling Properties

9.2.3 Modification of a Hydrogel with Catcher Molecules

9.3 Evanescent Wave Optics for Probing Hydrogel Films

9.3.1 Surface Plasmon Waves

9.3.2 Hydrogel Waveguide Optical Modes

9.3.3 Optical Excitation of Surface Plasmon and Hydrogel-Guided Waves

9.3.4 Observation of Hydrogel Films by Spectroscopy of Guided Waves

9.3.5 Investigation of Structured Gels

9.4 Mass Transport and Affinity Binding of Analyte in a Gel

9.4.1 Numerical Model

9.4.2 Profile of the Analyte Captured in the Gel

9.4.3 Design of a Hydrogel Matrix

9.5 Biosensor Implementations

9.5.1 Molecular Imprinted Hydrogel-Based Biosensors

9.5.2 Enzyme-Based Biosensors

9.5.3 Nucleic Acid-Based Biosensors

9.5.4 Immunoassay-Based Biosensors

9.6 Conclusion and Outlook

10. Surface Modification of High-Strength Interpenetrating Network Hydrogels for Biomedical Device Applications

David Myung, Lampros Kourtis, Jaan Noolandi, Jennifer Cochran, Christopher N. Ta, and Curtis W. Frank

10.1 Introduction

10.2 Literature Review

10.2.1 Classification of Bulk Hydrogels

10.2.1.1 Neutral hydrogels

10.2.1.2 Ionic hydrogels

10.2.2 Theory and Simulation of Polymer Networks

10.2.3 Interpenetrating Polymer Networks
10.2.3.1 Structure and complexation in IPN hydrogels 414
10.2.3.2 High-toughness and high-strength hydrogels 415
10.2.4 Polymer Surface Modification 418
 10.2.4.1 Strategy for modulating cell adhesion 418
 10.2.4.2 Photochemical methods for surface modification 418
 10.2.4.3 Challenges in photochemical surface modification 420
10.3 Bulk and Surface Properties of PEG/PAA IPN Hydrogels 421
 10.3.1 Introduction 421
 10.3.2 Synthesis of PEG/PAA Interpenetrating Network Hydrogels 422
 10.3.3 Characterization of Bulk PEG/PAA Properties 423
 10.3.3.1 Fluid content and hydraulic permeability 423
 10.3.3.2 Mechanical measurements 425
 10.3.4 Characterization of PEG/PAA IPN Surface Properties 427
10.4 Cellular Interaction with Surface-Modified PEG/PAA Hydrogels 428
 10.4.1 Photochemical Grafting of Collagen I to PEG/PAA IPN 429
 10.4.2 Characterization of Collagen I-Modified PEG/PAA Surface 430
 10.4.3 Sequential Grafting of Collagen I and Epidermal Growth Factor 434
10.5 Summary and Outlook 437

11. Ultrasensitive Biosensing with Polymer Brushes 447
Fang Yu
11.1 Introduction 447
11.2 Polymer Brush Matrix Based on Dextran Chemistry 450
11.3 Protein Immobilization on a Dextran Matrix 451
11.4 Comparison between 2D and 3D Matrices 452
11.5 LOD Evaluation 456
11.6 SPFS PSA Assay 459
 11.6.1 Affinity Determination 460
 11.6.2 Sandwich Assay of PSA Sample in Buffer and in Plasma 462
 11.6.3 Removal of Plasma NSB and LOD Evaluation 464
11.7 Conclusion 466

Part III Peptides, Proteins

12. Noncovalent Immobilization of Proteins to Surfaces 469
 Pascal Jonkheijm and Jurriaan Huskens
12.1 Introduction 469
12.2 Site-Selective Noncovalent Immobilization Methods 472
 12.2.1 Supramolecular Recognition Event Prior to Covalent Bond Formation 472
 12.2.2 Immobilization Methods Adopted from Affinity Chromatography 474
 12.2.3 Immobilization through DNA Base Pairing 479
 12.2.4 Immobilization through Host-Guest Interactions 480
12.3 Conclusion and Perspectives 485

13. Recent Progress on Site-Selective Covalent Methods for Generating Protein Biochips 493
 Qi An and Pascal Jonkheijm
13.1 Introduction 493
13.2 Site-Selective Surface Immobilization of Proteins 495
 13.2.1 Immobilization Using Staudinger Ligation 495
 13.2.2 Immobilization Using Cycloaddition Reactions 496
 13.2.3 Immobilization Using Oxime Ligation 499
 13.2.4 Immobilization through Boronate Formation 500
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.5 Light-Induced Immobilization Reactions</td>
<td>500</td>
</tr>
<tr>
<td>13.3 Conclusion and Perspectives</td>
<td>502</td>
</tr>
<tr>
<td>14. S-Layer Proteins</td>
<td>507</td>
</tr>
<tr>
<td>Uwe B. Sleytr, Dietmar Pum, Eva Maria Egelseer, Nicola Ilk, and Bernhard Schuster</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>507</td>
</tr>
<tr>
<td>14.2 Location and Ultrastructure of S-Layers</td>
<td>510</td>
</tr>
<tr>
<td>14.3 Isolation, Chemical Characterization, and Molecular Biology</td>
<td>512</td>
</tr>
<tr>
<td>14.4 Assembly of S-Layers in vivo</td>
<td>517</td>
</tr>
<tr>
<td>14.5 Self-Assembly of Isolated S-Layer Subunits (in vitro)</td>
<td>519</td>
</tr>
<tr>
<td>14.5.1 Self-Assembly in Suspension</td>
<td>521</td>
</tr>
<tr>
<td>14.5.2 Self-Assembly on Surfaces and at Interfaces</td>
<td>523</td>
</tr>
<tr>
<td>14.5.3 Patterning of S-Layers on Solid Supports</td>
<td>526</td>
</tr>
<tr>
<td>14.6 S-Layer Ultrafiltration Membranes</td>
<td>526</td>
</tr>
<tr>
<td>14.7 S-Layers as Matrix for the Immobilization of Functional Macromolecules and Nanoparticles</td>
<td>528</td>
</tr>
<tr>
<td>14.8 S-Layer Fusion Proteins and S-Layer Neoglycoproteins</td>
<td>532</td>
</tr>
<tr>
<td>14.9 S-Layers as a Matrix for Biomineralization</td>
<td>540</td>
</tr>
<tr>
<td>14.10 S-Layer-Stabilized Planar Lipid Membranes and Liposomes</td>
<td>542</td>
</tr>
<tr>
<td>14.11 Conclusions</td>
<td>549</td>
</tr>
<tr>
<td>15. Peptide Nanotube Coatings for Bioapplications</td>
<td>569</td>
</tr>
<tr>
<td>Lise T. de Jonge and Molly M. Stevens</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>569</td>
</tr>
<tr>
<td>15.2 Self-Assembled Peptide-Based Nanotubes</td>
<td>570</td>
</tr>
<tr>
<td>15.2.1 Peptide Amphiphile Nanotubes</td>
<td>570</td>
</tr>
<tr>
<td>15.2.2 Cyclic Peptide Nanotubes</td>
<td>573</td>
</tr>
<tr>
<td>15.2.3 Amyloid Peptide Nanotubes</td>
<td>575</td>
</tr>
<tr>
<td>15.3 Peptide Nanotube Coatings</td>
<td>576</td>
</tr>
<tr>
<td>15.4 Peptide Nanotubes for Bioapplications</td>
<td>579</td>
</tr>
<tr>
<td>15.4.1 Biosensors</td>
<td>579</td>
</tr>
<tr>
<td>15.4.2 Functional Biomaterials</td>
<td>581</td>
</tr>
</tbody>
</table>
15.5 Summary and Outlook 582

Part IV Sugars

16. Heparan Sulfate Surfaces to Probe the Functions of the Master Regulator of the Extracellular Space 591
Nina S. Azmi and David G. Fernig

16.1 Biological Significance of Glycosaminoglycans 591
16.2 Heparin and Heparan Sulfate 593
 16.2.1 Structure of Heparin and HS 593
 16.2.2 Biosynthesis of HS 594
16.3 Oligosaccharide Preparation 596
 16.3.1 Nitrous Acid Cleavage 596
 16.3.2 Bacterially Derived Lyase Enzymes 597
16.4 Strategies for Functionalizing Surfaces with HS, Heparin, and Derived Oligosaccharides 598
 16.4.1 Schiff’s Base Reaction 599
 16.4.2 Free Amines 600
 16.4.3 Reaction of the Δ4, 5-Unsaturated Uronic Acid Derivative 600
16.5 Applications of HS- and Heparin-Functionalized Surfaces 601
 16.5.1 Optical and Acoustic Biosensors 601
 16.5.2 Microarrays 603
16.6 Opportunities for Heparin- and HS-Functionalized Surfaces 606
16.7 Conclusion 609

17. Heparanated Surfaces 617
Victor Nurcombe, William R. Birch, and Simon M. Cool

17.1 Proteoglycans: Core Proteins and GAG Sugars (Mulloy) 618
17.2 Heparan Sulfate Biochemistry 620
17.3 The GAG Chains on Proteoglycans are “Catalysts of Molecular Encounter” 621
17.4 HS Functions 622
17.5 Glycosaminoglycans and Surfaces 623
17.6 The Manipulation of Signaling by Immobilized HS 625
17.7 Experiments on Specific Heparanated Surfaces 626
17.8 Conclusions 631

Part V Lipid Bilayer Membranes

18. Biomimetic Systems: The Tethered Bilayer Lipid Membrane 639
 Stefan M. Schiller
18.1 Introduction 640
18.2 Models of the Biological Membrane 643
 18.2.1 Overview over Biomimetic Membrane Schemes 644
 18.2.2 Advantages of tBLMs 645
 18.2.3 A Critical Question: Which Feature of the Biological Membrane Do We Want to Mimic, and What Is the Scientific Question We Want to Address? 647
18.3 Components of the tBLM and Their Properties 648
 18.3.1 The Substrate/Sensor Surface 650
 18.3.2 The Anchor Group—Self-Assembly 653
 18.3.3 The Tether/Spacer Group 655
 18.3.3.1 Tether/spacer systems 655
 18.3.4 The Linkage Type between Spacers, Polar Headgroups, and Hydrophobic Tails 658
 18.3.5 Hydrophobic Tails 659
18.4 Examples for tBLMs, Detection Schemes, and Their Applications 663
 18.4.1 Examples of tBLMs 663
 18.4.2 Detection Methods and tBLMs 666
 18.4.3 tBLM Applications 667
18.5 Current and Future Directions 670

19. Cell-Free Synthesis of Complex Membrane Proteins 685
 Ahu Arslan Yildiz, Sandra Ritz, and Eva-Kathrin Sinner
19.1 Introduction 685
19.2 Methods and Experimental Approaches 690
19.3 Incorporation of Isolated Protein 692
19.4 Detection of Cyt-bo3 Expression and Insertion by SPFS 692
19.5 Immune-Blotting Assay 694
19.6 Enzymatic Functionality Assay 696
19.7 Conclusion and Outlook 699

Ute Reuning, Daniela Lössner, Birgit Wiltschi, Wolfgang Knoll, and Eva-Kathrin Sinner

20.1 Surface Plasmon Resonance and Surface Plasmon–Enhanced Fluorescence Spectroscopy as Tools for Recording Binding Events to Membrane-Embedded Receptor Proteins 706
20.1.1 Principles of SPR 706
20.1.1.1 Technical extension of SPR: SPFS 707
20.1.2 Biological Membranes 710
20.1.2.1 Peptide-tethered, protein-functionalized artificial membranes 711
20.1.2.2 Integral membrane proteins 712
20.1.3 Transmembrane Adhesion and Signaling Receptors of the Integrin Superfamily 713
20.1.3.1 Integrins of the αv-family 714
20.1.3.2 Integrin antagonists 715

20.2 Development of an Integrin/Ligand-Binding Test on Artificial Membranes Established on SPR/SPFS Biosensors 716
20.2.1 Methods for Integrin-/Ligand-Binding Studies 716
20.2.2 Experimental Setup for Simultaneous Monitoring via SPR and SPFS 718
20.2.3 Integrin Functionalization of Peptide-Supported Phospholipid Bilayers 719
20.2.4 Fluorescence Labeling of Integrin Ligands
 20.2.4.1 Synthetic integrin ligands 723
 20.2.4.2 Vitronectin-, fibrinogen-, and integrin-specific monoclonal antibodies 723
20.2.5 Detection of Ligand Interaction by SPR/SPFS
 20.2.5.1 Competition of RGD-peptide binding to integrin αvβ3 by vitronectin 724
 20.2.5.2 Dissociation of integrin-ligand interaction 724
 20.2.5.3 Treatment of membrane-embedded integrins with proteinase K 724
20.3 SPR/SPFS Monitoring of Binding Events of Different Ligands to Membrane-Embedded Integrins
 20.3.1 Proof of Correct Orientation of Membrane-Embedded Integrins by Use of Integrin-Specific Antibodies Recognizing Integrin Extracellular Domains 726
 20.3.2 Binding of Natural Integrin Ligands of the Extracellular Matrix 726
 20.3.3 Integrin Binding of Synthetic RGD-Containing Peptide Ligands 728
 20.3.4 Interaction of a Synthetic RGD-Based Peptidomimetic with Integrins
 20.3.4.1 Competition of RGD-containing peptide binding to integrins 731
 20.3.4.2 Dissociation of integrin-ligand interactions 731
 20.3.4.3 Treatment of integrin-functionalized phospholipid bilayers by proteinase K 734
20.4 SPR/SPFS, a Promising Scientific Method for the Characterization of Transmembrane Receptor Proteins 734
21. Supported Lipid Bilayer Formation Using Self-Spreading Phenomena

Kazuaki Furukawa

21.1 Introduction 748
21.2 Preparation of Supported Lipid Bilayers by Self-Spreading 749
21.2.1 Preparation of Supported Lipid Bilayers by Vesicle Fusion 750
21.2.2 Preparation of Supported Lipid Bilayers by Self-Spreading 752
21.3 Self-Spreading Control Using Surface Patterns 753
21.3.1 Self-Spreading on a Patterned Surface 754
21.3.2 Self-Spreading on a Nanostructured Surface 755
21.4 Microchannel Device Using a Self-Spreading Lipid Bilayer as a Molecule Carrier 756
21.4.1 Microchannel Device Configuration and Operation 756
21.4.2 Observations of FRET Using the Proposed Device 757
21.5 Interaction with a Nanoscale Structure 760
21.5.1 Self-Spreading Behavior through a Single Sub-100-nm Gap 760
21.5.2 Interaction of Lipid Molecules with a Single Sub-100-nm Gap 762
21.6 Summary and Perspective 764

22. Electrically Addressable, Biologically Relevant Surface-Supported Bilayers

Janice Lin, Kalina Hristova, and Peter C. Searson

22.1 Introduction: Surface-Supported Bilayers as Models of Cell Membranes 769
22.2 Bilayers Produced via Langmuir–Blodgett Deposition 771
22.3 Theory of Impedance Spectroscopy of Supported Bilayers 774
22.3.1 Simulations 776
22.3.2 Parallel Capacitance 779
22.4 Substrate 780
22.4.1 Impedance of Moderately Doped Silicon, n-Si 781
22.4.2 DPhPC Bilayers on Moderately Doped Silicon, n-Si 783
22.4.3 Impedance of Highly Doped Silicon, n⁺-Si 786
22.4.4 DPhPC Bilayers on Highly Doped Silicon, n⁺-Si 786
22.4.5 Summary 788

22.5 Polymer Cushion 791
22.5.1 Electrochemical Characterization of Bilayers with Different PEG-Lipid Concentrations 791
22.5.2 Bilayer Homogeneity 797
22.5.3 Lipid Mobility 798
22.5.4 Time Dependence of Electrical Properties of PEG-Supported DPhPC Bilayers 800
22.5.5 Summary 802

22.6 Lipid Composition 803
22.6.1 Incorporation of Negatively Charged Lipids 803
22.6.2 DPhPC Bilayers Incorporating POPG, POPS, or POPC in the Upper Leaflet 805
22.6.3 Bilayers with DPhPC Lower Leaflets and POPC-/Cholesterol-Based Upper Leaflets 810
22.6.4 POPC-Based Bilayers 813
22.6.5 Summary of Bilayer Performance and Stability 815

22.7 Conclusion 817

23. Micropatterned Model Biological Membranes on a Solid Surface 821
Kenichi Morigaki

23.1 Introduction 822
23.2 Micropatterned Model Membrane Composed of Polymerized and Fluid Lipid Bilayers 824
23.3 Facilitated Integration of Fluid Lipid Bilayers in the Presence of Polymeric Bilayers 826
23.4 Composite Membranes of Polymerized and Fluid Lipid Bilayers 829
23.5 Spatially Controlled Phase Separation 832
23.6 Conclusion and Outlook 835

Part VI Cells on Biofunctional Surfaces

24. Matrix Mysteries and Stem Cells 845
 William Birch and Steve Oh
 24.1 Introduction 845
 24.1.1 Discovery and Characterization 845
 24.1.2 Applications of hESCs and hiPSCs 848
 24.2 Defined Media for hESC Culture 848
 24.3 Defined Planar Surfaces for hESC Culture 849
 24.3.1 Extracellular Matrices 849
 24.3.2 Vitronectin 852
 24.3.3 Peptides 853
 24.3.4 Interrogation of Protein Coating on Surfaces 853
 24.3.5 Polymers as Alternatives 854
 24.4 Summary of 2D Surfaces for hESC Culture 855
 24.5 Future Perspectives 856
 24.5.1 Expansion on Microcarriers 856
 24.5.2 Aggregate Control 856
 24.5.3 Differentiation 857
 24.5.4 Elimination of Residual hESC 857

25. Mechanical Cues for Cell Culture 865
 K. A. Melzak, S. Moreno-Flores, M. dM Vivanco, and Jose-Luis Toca-Herrera
 25.1 Properties and Components of the ECM 868
 25.2 Modification of Hard Surfaces with an ECM or ECM-Like Layer 870
 25.2.1 Use of a Preconditioned Surface 871
 25.2.2 Use of a Cell Layer as a Substrate 871
 25.2.3 Matrigel®: Coating Polystyrene vs. Coating Glass 871
 25.3 Modification of Hard Surfaces with Collagen 872
 25.3.1 Addition of Collagen to Polystyrene 873
25.3.2 Addition of Collagen to Glass and Effect of Surface Hydrophobicity 874
25.3.3 Addition of Collagen to Mica 875
25.3.4 Effect of Drying the Collagen Layers 875
25.3.5 Modifications of Collagen 877
25.4 Collagen Gels in Three Dimensions 877
25.5 Preparation and Modification of Substrates with Defined Mechanical Properties 878
 25.5.1 Preparation and Modification of Polyacrylamide (1–50 kPa) 879
 25.5.2 Preparation and Modification of Polydimethylsiloxane (10–3,000 kPa) 881
 25.5.3 Other Polymers 881

Andreas Offenhäusser, Dirk Mayer, Simone Meffert, and Daniel Schwaab

26.1 Introduction 900
26.2 Surface-Bound Proteins Patterned by Soft Lithography 900
 26.2.1 Soft Lithography 901
 26.2.1.1 Stamp fabrication 902
 26.2.2 Protein Transfer 905
 26.2.3 In situ Microcontact Printing 908
26.3 Neuronal Adhesion and Outgrowth 909
 26.3.1 Compliance of Neuronal Cell Position with a Protein Pattern 910
 26.3.2 Neuronal Polarity and Directed Outgrowth 912
 26.3.2.1 Generation of protein gradients by microscale patterning 914
 26.3.3.2 Generation of protein gradients by nanoscale patterning 914
26.4 Summary 916
27. Hemocompatible Surfaces for Blood-Contacting Applications
 Yuquan Zou, Kai Yu, Benjamin F. L. Lai, Donald E. Brooks, and Jayachandran N. Kizhakkedathu

27.1 Introduction

27.2 Hemocompatible Surfaces Based on Polymer Brushes
 27.2.1 Theoretical Considerations
 27.2.2 Different Types of Hemocompatible Polymer Brushes
 27.2.2.1 Neutral homopolymer brushes
 27.2.2.2 Hyperbranched polymer-grafted surfaces
 27.2.2.3 Zwitterionic polymer brushes
 27.2.2.4 Glycopolymer brushes

27.3 Importance of the Use of New Screening Techniques for Assessing Hemocompatibility
 27.3.1 Thromboelastography
 27.3.2 Proteomics Analysis
 27.3.3 AFM Force-Distance Measurements

27.4 Conclusions

Part VII Applications

28. Nanopatterning of Biomolecules by Dip-Pen Nanolithography
 Xiaozhu Zhou, Sreenivasan Koliyat Parayil, Hai Li, and Hua Zhang

28.1 Introduction

28.2 Direct- and Indirect-Write DPN

28.3 Applications in Biological Systems
 28.3.1 DNA
 28.3.2 Proteins
 28.3.3 Enzymes
 28.3.4 Peptides
 28.3.5 Viruses and Bacteria
 28.3.6 Lipids

28.4 Conclusions and Outlook
29. Application of Biofunctional Surfaces in Medical Diagnostics
Christa Nöhammer

29.1 Introduction 981
29.2 Basics and Potential of Microarray Technology 982
29.3 Microarrays for Cancer Diagnostics 985
 29.3.1 Microarrays and Gene Expression Signatures 987
 29.3.2 DNA Methylation Microarrays 992
 29.3.3 High-Density Protein Microarrays for Tumor Autoantibody Detection 999
29.4 Microarrays for Infectious Disease Diagnostics and Lab-on-a-Chip Systems 1002

30. Nanopatterning for Bioapplications 1013
Patrick Domnanich and Claudia Preininger

30.1 Introduction 1013
30.2 Fabrication Techniques 1014
 30.2.1 Nanoimprint Lithography 1014
 30.2.2 Scanning Probe Nanolithography 1019
 30.2.2.1 Scanning tunneling microscope lithography 1020
 30.2.2.2 Atomic force microscope lithography 1021
 30.2.3 Self-Assembled Nanopatterns 1030
 30.2.3.1 Block copolymer nanopatterning 1031
 30.2.3.2 Liquid crystal templating 1034
 30.2.3.3 Colloids and nanospheres 1035
 30.2.3.4 Biomaterials 1038
30.3 Applications 1038
 30.3.1 Nanosensor Devices 1038
 30.3.2 Biomolecular Nanoarrays 1039
 30.3.3 Implants and Tissue Engineering 1041
30.4 Outlook 1044
31. Glucose Biosensors: Transduction Methods, Redox Materials, and Biointerfaces

Roderick B. Pernites and Rigoberto C. Advincula

31.1 Introduction 1069

31.2 Sensors 1070
 31.2.1 Method of Enzyme Immobilization 1072
 31.2.2 Minimal- vs. Noninvasive Approach 1075
 31.2.3 Requirements of a Glucose Sensor 1077
 31.2.4 Classification of Glucose Biosensor According to Generation 1077

31.3 Materials and Methods 1081
 31.3.1 Conducting Polymers in Sensing 1081
 31.3.2 EC-SPR Glucose Sensing 1085
 31.3.2.1 SPR introduction 1085

31.4 New Materials and Interfaces 1091
 31.4.1 Nanotubes 1091
 31.4.2 Hydrogels 1093
 31.4.3 Sol-Gels 1095
 31.4.4 Layer-by-Layer Assembly 1096
 31.4.5 Molecularly Imprinted Polymers and Electropolymerized Films 1100
 31.4.6 Nanoparticles and Nanocomposites 1101
 31.4.7 Polymer Brush 1103

31.5 Conclusions 1105

Index 1115