Electrical Power Transmission and Distribution

Aging and Life Extension Techniques

Bella H. Chudnovsky
Contents

Preface ... xxix
Author ... xxiii
Acronyms .. xxv

Chapter 1 Plating of Electrical Equipment

1.1 Electroplating for Contact Applications ... 1
 1.1.1 Silver Plating ... 1
 1.1.1.1 Physical Properties of Silver Plating ... 1
 1.1.1.2 Silver Plating Thickness for Electrical Applications .. 2
 1.1.1.3 The Use of a Nickel Underplate for Silver Plating ... 2
 1.1.1.4 Types of Silver Platings ... 3
 1.1.2 Tin Plating ... 4
 1.1.2.1 Physical Properties of Tin Plating ... 4
 1.1.2.2 Tin Plating Thickness for Electrical Applications ... 5
 1.1.3 Nickel Plating ... 6
 1.1.3.1 Applications of Nickel Plating in the Electrical Industry 7
 1.1.3.2 Physical Properties and Thickness of Nickel Plating ... 7
 1.2 Electroless Plating .. 8
 1.2.1 Electroless Nickel: Physical Properties ... 9
 1.2.1.1 Chemical Composition and Structure of EN Plating 9
 1.2.1.2 Physical Properties of Electroless Ni Plating ... 9
 1.2.1.3 EN Film Thickness .. 10
 1.2.2 Electroless Nickel: Corrosion Resistance .. 11
 1.2.3 Electroless Nickel: Electrical Resistivity ... 11
 1.3 Electroless Nickel as a Plating Alternative for Electrical Apparatuses in Corrosive Atmosphere ... 12
 1.3.1 Testing of EN for Use in Electrical Applications ... 13
 1.3.1.1 Testing the Anticorrosion Properties of EN Plating 13
 1.3.1.2 Testing of the Electrical Properties of EN Plating .. 17
 1.3.2 Field Testing of EN-Plated Electrical Equipment in Energized Conditions 18
1.3.2.1 Live Electrical Tests 19
1.3.2.2 Electrical Properties of the Contactor
Reconditioned with EN Plating 20
1.3.2.3 Precaution in Electrical Applications
of EN Plating .. 22

1.4 Zinc Electroplating and Galvanization 23
1.4.1 Zinc Electroplating 23
1.4.2 Zinc Galvanization Processes 24
1.4.2.1 Hot-Dip Galvanizing 24
1.4.2.2 Continuous Galvanizing 24
1.4.2.3 Electrogalvanizing 24
1.4.2.4 The Process of Galvanizing 25
1.4.3 Conversion Zn Plating: Passivation with
CrIII or CrVI ... 25
1.4.3.1 Corrosion Resistance 25
1.4.3.2 Color Variability 25
1.4.3.3 Self-Healing Properties 26
1.4.3.4 Identification 26
1.4.3.5 The Cost Issue 26

1.5 Metal Whiskers on Plating (Noncorrosive Phenomenon) 26
1.5.1 Whisker Phenomenon and Characteristics 26
1.5.1.1 Conditions and Characteristics of
Growth ... 27
1.5.1.2 Environmental Factors 29
1.5.1.3 Historical Account of Metal
Whiskers Hazards ... 29
1.5.2 Tin Whisker Mitigation Techniques 31
1.5.2.1 Underplating ... 31
1.5.2.2 Addition of Lead 31
1.5.2.3 Heat Treatments 32
1.5.2.4 Hot-Dip Tin Plating 32
1.5.2.5 Thicker Tin Finish 32
1.5.2.6 Conformal Coating 32
1.5.2.7 Non-Tin Plating and Coating 32
1.5.3 Tin Whiskers and the RoHS Initiative 33
1.5.3.1 Lead-Free Solders 33
1.5.3.2 “Pure” Tin Finishes 33
1.5.4 Whisker Mitigation Levels Classification 34
1.5.5 Whiskers on Other Metal Platings 35

1.6 Plating on Aluminum 37
1.6.1 Use of Aluminum in Electrical Industry 37
1.6.1.1 Choice of Plating 37
1.6.1.2 Difficulties with the Plating of Aluminum .. 38
1.6.2 Metals Used to Plate Aluminum 39
1.6.3 Methods for Plating on Aluminum 39
1.6.3.1 Plating Classifications 40
1.6.3.2 Pretreatment by Zincating40
1.6.3.3 Tin Plating Techniques on Al41
1.6.4 Quality of Tin Plating on Al for Different
Plating Techniques41
1.6.4.1 Adhesion Test42
1.6.4.2 Thermal Shock Test42
1.6.4.3 Plating Techniques and Adhesion
of Tin Plating on Al43
1.6.4.4 Plating Techniques and the Quality
of Tin Plating on Al43
1.7 Plating Standards and Glossary45
1.7.1 National and International Standards and
Regulations on Plating45
1.8 Plating Glossary47
References ...58

Chapter 2 Detrimental Processes and Aging of Plating63
2.1 Issues of Tin Plating Performance63
2.1.1 General Precautions in Using Tin Plating63
2.1.1.1 Tin and Fretting Corrosion63
2.1.1.2 Tin and Intermetallic Compounds64
2.1.2 Thermal Deterioration of Tin Plating
on Aluminum ..64
2.1.2.1 Accelerated Aging Study of Tin Plating65
2.1.2.2 Quality of Thermally Aged
Tin Plating ..66
2.1.2.3 Mechanisms of Thermal Deterioration
of Tin Plating on Al68
2.1.2.4 Tin Plating on Aluminum as a Possible
Cause of Connection Overheating69
2.1.3 Tin Pest ..70
2.1.3.1 Definition of Tin Pest70
2.1.3.2 Effects of Alloying Elements and the
Environment on Tin Pest70
2.1.3.3 Example of Tin Pest Failure in
Electrical Connectors72
2.1.3.4 Impact of RoHS on Possible Tin
Pest Failures ..72
2.2 Use of Underplating for Plating Longevity73
2.2.1 Mitigating Role of Underplating73
2.2.2 Advantages of Nickel as Underplating74
2.2.2.1 Ni Underplating Provides a
Diffusion Barrier74
2.2.2.2 Ni Underplating Prevents the
Formation of Intermetallics75
2.2.2.3 Ni Underplating Improves Wear Resistance 75
2.2.2.4 Ni Underplating Increases Corrosion Resistance 75
2.2.2.5 Other Advantages of Ni Underplating 76

2.2.3 Recommended Thickness of Nickel Underplating 76

2.3 Applications of Ni Underplating 77
2.3.1 Use of Ni Underplating for Tin Plating on Copper 77
2.3.1.1 The Formation of Ni-Sn Intermetallics 77
2.3.2 Nickel Underplating as a Tin Whisker Mitigation Technique 78
2.3.3 Ni Underplating for Tin Plating on Aluminum 80
2.3.3.1 Plating, Sample Preparation, and Testing Techniques 80
2.3.3.2 Quality of the Plating and Interfaces 81
2.3.3.3 Formation of Ni-Sn Intermetallics 82
2.3.3.4 Comparison of Aging Behavior of Sn Plating with Ni, Bronze, or Cu Underlayer 82
2.3.4 Ni Underplating for Gold Plating 84

2.4 Galvanic Corrosion: Connections Made of Dissimilar Metals 85
2.4.1 Hazard: Galvanic Corrosion 85
2.4.2 Definition of Dissimilar Metals 86
2.4.3 Galvanic Corrosion of Copper-to-Aluminum Connections 87
2.4.4 Protection of Copper-to-Aluminum Connections from Galvanic Corrosion 88
2.4.4.1 Plated Aluminum Connections 89
2.4.4.2 Fasteners 89
2.4.4.3 Corrosion Protective Compound for Copper-to-Aluminum Connections 89
2.4.5 Galvanic Corrosion in Steel Connections with Aluminum and Other Metals 90
2.4.6 General Precautions to Minimize Galvanic Corrosion in Connections 91

2.5 Other Detrimental Processes Affecting Plating Performance 92
2.5.1 Intermetallic Compounds 92
2.5.1.1 Copper-Tin Intermetallic Compounds 92
2.5.1.2 Effects of Temperature and Time on the Formation of Cu-Sn IMC 93
2.5.1.3 Resistance of the Contacts with Tin Coating 94
Chapter 3 Electrical Equipment in a Corrosive Environment

3.1 Corrosion Factors in the Atmosphere
3.1.1 Types of Corrosive Atmospheres
3.1.1.1 Indoor Atmosphere
3.1.1.2 Rural Atmosphere
3.1.1.3 Marine Atmosphere
3.1.1.4 Industrial Atmosphere
3.1.2 Factors Affecting Atmospheric Corrosion
3.1.2.1 Relative Humidity
3.1.2.2 Temperature
3.1.2.3 Deposition of Aerosol Particles
3.1.2.4 Pollutants, Corrosive Gases
3.1.3 Airborne Contamination in Data Centers
3.1.4 Zinc Whiskers

3.2 Effect of Environment on Bare Metals
3.2.1 Iron and Steel in Enclosures, Frames, Rails, and so Forth
3.2.2 Copper and Copper Alloys: Parts of the Conductive Path
3.2.3 Nickel and Nickel Alloys: Electrical Contacts and Plating
3.2.4 Aluminum and Aluminum Alloys in Electrical Applications

3.3 Atmospheric Corrosion of Silver Plating
3.3.1 Silver Plating Corrosion and Tarnish
3.3.1.1 Sulfuric Corrosion
3.3.1.2 Silver Tarnish
3.3.1.3 Silver Whiskers
3.3.2 Red-Plaque Corrosion
3.3.3 Underplating Corrosion
3.3.4 Effect of Silver Plating Thickness and Quality on Sulfuric Corrosion
3.3.5 Corrosion of a Copper Bus with Flash Silver Plating

3.4 Effect of Silver Corrosion on Contact Resistance
3.4.1 Silver Tarnish and Contact Electrical Resistance
3.4.1.1 Thickness of Silver Tarnish
3.4.1.2 Effect of the Current Load and Mechanical Load on the Corroded Contact Resistance
3.4.2 Techniques of Tarnish Cleaning
3.5 Silver Whiskers: A Mysterious and Dangerous Phenomenon

3.5.1 History of Silver Whiskers

3.5.2 Factors That Affect the Growth of Silver Whiskers

3.5.2.1 Environmental Factors

3.5.2.2 Plating Factors

3.5.3 Failures in Electrical Equipment Caused by Silver Whiskers

3.5.4 Study of the Silver Whisker Phenomenon

3.5.4.1 Visual Appearance of the Whiskers

3.5.4.2 Morphology

3.5.4.3 Chemical Composition

3.5.4.4 Chemical Composition of the Whisker Cross Section

3.5.5 Silver Whiskers Puzzle

3.5.5.1 What Do We Know?

3.5.5.2 What Do We Not Know or Understand?

3.5.5.3 Questions Not Answered Yet

3.5.5.4 Native Silver Wires

3.6 Tin Plating Corrosion

3.6.1 Tin Oxidation

3.6.2 Reaction of Tin with Other Gases

3.7 Zinc Plating Corrosion and Galvanized Steel

3.7.1 Atmospheric Corrosion of Zn

3.7.2 White Rust on Zinc

3.7.3 Galvanized Steel

3.7.4 Signs of Galvanized Steel Corrosion

3.7.4.1 Rusting

3.7.4.2 Pitting Corrosion

3.7.5 Factors Affecting Galvanized Steel Corrosion

3.7.5.1 The Environment

3.7.5.2 Thickness of Zinc Plating

3.7.6 Corrosion of Galvanized Steel in Circuit Breaker

3.8 Means of Corrosion Protection of Electrical Equipment

3.8.1 Protective Coatings for Conductive Parts, Enclosures, and Frames

3.8.1.1 Metallic Coatings for Conductive Parts and Enclosures

3.8.1.2 Polymeric Coatings and Paints for Enclosures and Frames

3.8.2 Means of Protection from Silver Corrosion

3.8.2.1 Silver Protection from Corrosion

3.8.2.2 Silver Plating Thickness

3.8.2.3 Alternate Plating
4.4 Lubrication of Electrical Contacts ... 178
 4.4.1 Principles of Contact Lubrication .. 179
 4.4.2 Choice of Lubricants Based on Design and Contact/Plating Materials ... 179
 4.4.3 Lubrication as Protection from Fretting Corrosion, Mechanical Wear, and Friction 183
 4.4.4 Lubrication as Protection from Corrosion 184
 4.4.5 Durability of Lubricants ... 185
4.5 Practical Lubrication ... 186
 4.5.1 Periodic Lubrication Maintenance of Electrical Power Equipment ... 186
 4.5.1.1 Cleaning ... 186
 4.5.1.2 Penetrating Oil ... 186
 4.5.1.3 Lubrication in Field .. 187
 4.5.1.4 Troubleshooting Lubrication 187
 4.5.2 General Lubrication Recommendations for Electrical Equipment ... 187
 4.5.2.1 Choice of Lubricants .. 187
 4.5.2.2 OEM Specifications .. 188
 4.5.2.3 Change of Lubrication Product 188
 4.5.2.4 Lubrication of Electrical Contacts 188
 4.5.2.5 Application of Lubricants .. 188
4.6 Lubrication Failure Modes ... 189
 4.6.1 Causes of Lubrication Failure .. 189
 4.6.2 Wrong Lubricant for Application .. 190
 4.6.3 Thermal Limitations .. 190
 4.6.4 Lubricant Composition and Wrong Amount of Lubricant 191
 4.6.5 Contaminants or Corrosives in the Lubricant 191
 4.6.6 Environmental Factors Causing Grease Deterioration 192
 4.6.7 Lubricants' Incompatibility ... 193
4.7 Lubrication Failures of Electrical Equipment: Case Studies 193
 4.7.1 CB Failures Caused by Lubrication at U.S. Commercial Nuclear Power Plants ... 193
 4.7.2 Overheating of the MV Switch ... 194
4.8 Informational Sources for Lubricants .. 198
4.9 Lubrication Glossary ... 201
References ... 208

Chapter 5 Insulation, Coatings, and Adhesives in Transmission and Distribution Electrical Equipment ... 215
 5.1 Insulating Materials in Power Equipment 215
 5.1.1 Insulating Materials Used in the Electrical Industry 215
5.1.2 Thermal Limitation for Electrical Insulation 219
5.1.3 Thermal Degradation of Insulators 222
5.1.4 Temperature Limitations for Switchgear Assembly Based on Insulation Class 223

5.2 Aging of Insulating Materials due to Electrical Stress 224
5.2.1 Electrical Breakdown in Insulation 224
5.2.2 Corona 225
5.2.2.1 Destructive Nature of Corona 225
5.2.2.2 Corona Tracking 226
5.2.2.3 Corona in Switchgear 227
5.2.3 Partial Discharge 227
5.2.3.1 Partial Discharge in Switchgear 230
5.2.3.2 Partial Discharge in Paper-Insulated HV Cables 230

5.3 Environmental Aging of Insulating Materials 231
5.3.1 Insulation Deterioration under Environmental Conditions 231
5.3.2 Biological Contamination and Corrosion of Insulators 232
5.3.3 Environmental Aging of Insulators in Transmission Lines 232
5.3.4 Stress Corrosion Cracking in Composite Insulators 233

5.4 HV Bushings in Transformers and CBs 234
5.4.1 Types of Bushings 234
5.4.2 Bushings: Possible Causes of Failures 235

5.5 Power Cable Insulation 236
5.5.1 Cable Insulation Types 237
5.5.2 Aging of Cable Insulating Materials 238
5.5.2.1 XLPE Cable Insulation Degradation 238
5.5.2.2 Electrical and Water Treeing 239

5.6 Other Insulating Media 239
5.6.1 Insulating Oil 239
5.6.1.1 Transformer Oil 239
5.6.1.2 Oil Switches and CBs 240
5.6.1.3 Aging of Transformer Oil 240
5.6.1.4 Thermal and Electrical Faults of Transformer Oil 241
5.6.2 Sulfur Hexafluoride (SF_6) as Insulating and Cooling Media 243
5.6.2.1 Insulating Properties and Decomposition of SF_6 243
5.6.2.2 SF_6 as a Greenhouse Gas 244
5.6.3 Air and Vacuum as Insulating Media 244

5.7 Powder Coating and Paint for Electrical Enclosures 245
5.7.1 Electrical Enclosures: Types and Materials 245
Contents

6.2.3 Aging Equipment in Power Generation and Transmission and Distribution .. 274
 6.2.3.1 Overhead Power Transmission 274
 6.2.3.2 Power Plant .. 274

6.2.4 Aging Power Equipment in a Residential Environment .. 275
 6.2.4.1 Aging of Conductors 277
 6.2.4.2 Aging of Insulation 277

6.2.5 Aging Electrical Equipment in Rural/Agricultural Applications ... 277

6.3 Failure Modes and Failure Rates of Aging Electrical Equipment .. 278
 6.3.1 Definitions of Failure, Failure Mode, and Failure Rate of Electrical Equipment 278
 6.3.2 The Bath Tub Curve, the Hypothetical Failure Rate vs. Time ... 279
 6.3.3 Failure Causes of CBs 280
 6.3.3.1 LV and MVCB Failure Causes 280
 6.3.3.2 Failures of Circuit Breakers According to the *IEEE Gold Book* 281
 6.3.4 Failure Causes and Failure Rates of Power Transformers .. 282
 6.3.4.1 MV and LV Power Transformers 282
 6.3.4.2 HV Power Transformers 282
 6.3.5 Failure Causes of MV Switchgear 283
 6.3.6 Failure Causes of Other MV and LV Power Electrical Equipment 284
 6.3.7 Failure Causes of Power Connectors 285
 6.3.7.1 Aluminum Connectors 286
 6.3.7.2 Corrosion .. 286
 6.3.7.3 Contact Fretting 286
 6.3.7.4 Stress Relaxation 287
 6.3.8 Inadequate Maintenance and Maintenance Quality as a Cause of Failure 287

6.4 Failure Causes and Rates of Electrical Equipment Based on CIGRÉ Survey 288
 6.4.1 Results of the Older CIGRÉ Surveys of HV CB Failures ... 289
 6.4.1.1 Main Results of the First Survey 290
 6.4.1.2 Maintenance Aspects 290
 6.4.1.3 Mechanical Aspects 290
 6.4.2 Failure Causes of GIS 290
 6.4.2.1 Older CIGRÉ Surveys 290
 6.4.2.2 Major GIS Failure Modes 291
 6.4.2.3 Age of CIS and Major Failure Mode Distribution .. 291
6.4.2.4 Location, Origin, and Environmental Contribution in GIS Major Failure 291
6.4.2.5 Component and Voltage Class of CIS ... 292
6.4.2.6 Age of GIS Components ... 292
6.4.2.7 Service Conditions of Major Failure Discovery 292
6.4.2.8 Time of MF Cause Introduced ... 292
6.4.2.9 Age of the CIS and Primary Cause of the Failure 293
6.4.2.10 Failure Rates of GIS Components .. 293
6.4.3 Failure Causes of SF₆ CBs ... 293
6.4.4 Failure Causes of Disconnectors and Earthing Switches 294
6.5 Failure Cases of High-Voltage Electrical Equipment 294
6.5.1 Failures of HV Bushings ... 294
6.5.2 Failures of HV Transformers ... 295
 6.5.2.1 Case: Failure of Winding Insulation and Bushing 295
6.5.3 Failure Mechanisms of HV Transformers and Bushings 296
6.5.4 Failures of HV CBs .. 297
 6.5.4.1 Case 1: Failure of Mechanical Linkage ... 297
 6.5.4.2 Case 2: Trapped Water in Internal Bolt Holes 297
 6.5.4.3 Case 3: Contact Jamming or Mechanism Failure 298
6.6 Failure Cases of Low- and Medium-Voltage Electrical Equipment 299
6.6.1 Bushing Failures in MV Switchgear .. 299
6.6.2 Case Studies of MV Switchgear Failures .. 300
 6.6.2.1 Case 1: Component Defect .. 301
 6.6.2.2 Case 2: Arcing, Design Errors ... 301
 6.6.2.3 Case 3: Flashover, Water Condensation .. 301
 6.6.2.4 Case 4: Overheating .. 301
6.6.3 Metal-Clad Switchgear Failures .. 302
 6.6.3.1 Case 1: Failure of the 25-Year-Old Circuit Breaker, and Lack of Maintenance ... 302
 6.6.3.2 Case 2: Insulator Failure ... 302
6.6.4 Failure of MV Power Cables ... 303
6.6.5 LV Switchboard Failure ... 303
References .. 305
Chapter 7

Physical Conditions of Electrical Equipment: Testing, Monitoring, and Diagnostics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Parameters Defining the Physical Conditions of Electrical Equipment</td>
<td>310</td>
</tr>
<tr>
<td>7.1.1 Transformers</td>
<td>310</td>
</tr>
<tr>
<td>7.1.2 HV Bushings</td>
<td>310</td>
</tr>
<tr>
<td>7.1.3 Circuit Breakers</td>
<td>310</td>
</tr>
<tr>
<td>7.1.4 Switchgear</td>
<td>310</td>
</tr>
<tr>
<td>7.1.5 Power Cables</td>
<td>311</td>
</tr>
<tr>
<td>7.2 Techniques for Testing Physical Conditions of MV Cables</td>
<td>311</td>
</tr>
<tr>
<td>7.2.1 Comparison of MV Cable Testing Techniques</td>
<td>312</td>
</tr>
<tr>
<td>7.2.2 High Potential Withstand Test</td>
<td>313</td>
</tr>
<tr>
<td>7.2.2.1 DC HIPOT Test</td>
<td>313</td>
</tr>
<tr>
<td>7.2.2.2 Very Low-Frequency HIPOT Test</td>
<td>314</td>
</tr>
<tr>
<td>7.2.2.3 AC Power Frequency HIPOT Test</td>
<td>315</td>
</tr>
<tr>
<td>7.2.3 PD Diagnostics</td>
<td>315</td>
</tr>
<tr>
<td>7.2.4 Choice of MV Cable Diagnostics</td>
<td>316</td>
</tr>
<tr>
<td>7.3 Testing Techniques to Assess Insulation Conditions of HV/MV Switchgear, CBs, and Transformers</td>
<td>317</td>
</tr>
<tr>
<td>7.3.1 Insulation Condition: PD Testing</td>
<td>317</td>
</tr>
<tr>
<td>7.3.1.1 PD Mechanism and Effect on Insulation</td>
<td>317</td>
</tr>
<tr>
<td>7.3.1.2 Ultrasonic Detection of PD</td>
<td>318</td>
</tr>
<tr>
<td>7.3.1.3 PD Detection Using Transient Earth Voltages</td>
<td>318</td>
</tr>
<tr>
<td>7.3.2 Diagnostics of Oil Condition</td>
<td>319</td>
</tr>
<tr>
<td>7.3.2.1 Dissolved Gases in Oil</td>
<td>319</td>
</tr>
<tr>
<td>7.3.2.2 Water, Acids, and Furans in Oil</td>
<td>320</td>
</tr>
<tr>
<td>7.3.2.3 Power Factor of Transformer Oil</td>
<td>322</td>
</tr>
<tr>
<td>7.3.2.4 Techniques of Oil Diagnostics</td>
<td>322</td>
</tr>
<tr>
<td>7.3.2.5 Online Monitoring of Transformer Oil Conditions</td>
<td>323</td>
</tr>
<tr>
<td>7.4 Online Monitoring Techniques for PD of MV Substations, Switchgear, and Cables</td>
<td>324</td>
</tr>
<tr>
<td>7.4.1 PD Detection in Substations, Switchgear, and Cables</td>
<td>325</td>
</tr>
<tr>
<td>7.4.2 Monitoring PDs with Fiber-Optic Technology</td>
<td>325</td>
</tr>
<tr>
<td>7.5 Testing of HV Bushing Conditions</td>
<td>326</td>
</tr>
<tr>
<td>7.6 Thermal Conditions of Electrical Equipment and Temperature Monitoring</td>
<td>327</td>
</tr>
<tr>
<td>7.6.1 Temperature Measurement Using Thermography</td>
<td>328</td>
</tr>
<tr>
<td>7.6.2 Continuous Temperature Measurement</td>
<td>328</td>
</tr>
<tr>
<td>7.6.2.1 IR Noncontact Temperature Sensors</td>
<td>328</td>
</tr>
<tr>
<td>7.6.2.2 Electronic Temperature Sensors</td>
<td>329</td>
</tr>
</tbody>
</table>
7.6.3 Fiber-Optic Technology for Temperature Measurement .. 329
 7.6.3.1 Optical Fiber Sensing Probe ... 329
 7.6.3.2 Distributed Fiber-Optic Temperature Sensing ... 330

7.6.4 Winding Temperature Monitoring of HV Transformers with the Fiber-Optic Technique 331

7.6.5 Wireless Temperature Monitoring ... 332
 7.6.5.1 Structure, Benefits, and Problems of Wireless Temperature-Monitoring Systems 332
 7.6.5.2 Thermal Diagnostics .. 333
 7.6.5.3 Wireless Temperature Sensors: Power Source ... 333
 7.6.5.4 Wireless Temperature Monitoring Techniques ... 334
 7.6.5.5 Wireless Temperature Monitoring with SAW Sensors 335

7.7 Physical Conditions of Transmission Electrical Equipment: Online Monitoring Techniques 336
 7.7.1 Condition Monitoring Technologies in Electrical Transmission 336
 7.7.2 Overhead Transmission Lines .. 336
 7.7.3 Properties of Transmission Overhead Lines to Monitor, Sensing Elements and Monitoring Techniques ... 338
 7.7.3.1 Conductor Sag Measurements ... 339
 7.7.3.2 Conductor Temperature Measurements ... 339
 7.7.3.3 Combined Monitoring Solutions .. 341

References .. 342

Chapter 8 Electrical Equipment Maintenance and Life Extension Techniques 347
 8.1 Maintenance Strategies ... 347
 8.2 Maintenance as a Life Extension Technique .. 349
 8.2.1 Time-Based Maintenance ... 349
 8.2.2 Maintenance of Power Circuit Breakers .. 349
 8.2.2.1 Molded Case Circuit Breakers .. 349
 8.2.2.2 Low-Voltage Circuit Breakers ... 350
 8.2.2.3 Medium-Voltage Circuit Breakers .. 350
 8.2.2.4 High-Voltage Circuit Breakers ... 350
 8.2.2.5 SF6 Gas Circuit Breakers .. 351
 8.2.3 Periodic Lubrication of the Power Circuit Breaker ... 351
 8.2.4 Refurbishment or Reconditioning .. 352
 8.2.5 Condition-Based Maintenance .. 354