Contents

1 1900–1962: From Planck to Bohr 1

2 1913. "On the Constitution of Atoms and Molecules": Quantum Jumps and Epistemological Leaps 17

 3.1 From Bohr to Heisenberg, and from Heisenberg to Bohr 27
 3.2 Atomic Theory and Mechanics 30
 3.3 Quantum Mechanics and the Correspondence Principle 35
 3.4 Quantum Mechanics and the Relationships Between Mathematics and Physics 37

 4.1 From Quantum Mechanics to Complementarity 41
 4.2 The Quantum Postulate: Discontinuity and Irrationality 45
 4.3 Complementarity and the Problem of Causality 51

5 1929. "The Quantum of Action and the Description of Nature": New Complementarities and a New Interpretation 59
 5.1 Beyond (and Against) the Como Argument 59
 5.2 A Renunciation of the Causal Space–Time Mode of Description 62
 5.3 Classical Concepts, the Uncertainty Relations, and Probability 65
 (the Bristol Lecture): Quantum Phenomena
 and the Double-Slit Experiment .. 71
 6.1 Bohr’s Epistemology and the Double-Slit Experiment 71
 6.2 The Double-Slit Experiment: Physics and Epistemology 73
 6.3 The Uncertainty Relations, Complementarity,
 and Probability ... 84

7 1933. “On the Question of Measurability of Electromagnetic
 Field Quantities”: Complementarity and Quantum
 Field Theory .. 89
 7.1 Quantum Field Theory in Bohr and Beyond 89
 7.2 Quantum Field Theory and Measurements 94
 7.3 How Many Particles? .. 100

8 1935. “Can Quantum-Mechanical Description of Physical
 Reality Be Considered Complete?”: The EPR Experiment
 and Complementarity ... 107
 8.1 From BKS to EPR ... 107
 8.2 “Can Quantum-Mechanical Description of Physical Reality
 Be Considered Complete?”: EPR’s Argument 114
 8.3 “Can Quantum-Mechanical Description of Physical Reality
 Be Considered Complete?”: Bohr’s Argument 116
 8.4 Can Quantum-Mechanical Description of Physical Reality
 Be Considered Local? ... 128
 8.5 Postscript. 1927–1949. “Discussion with Einstein
 on Epistemological Problems in Atomic Physics”
 (A Post-EPR View) .. 131

9 1937–1938. “Complementarity and Causality” and
 “The Causality Problem in Atomic Physics”
 (The Warsaw Lecture): The Knowable and the Unthinkable 137
 9.1 New Concepts and New Epistemology 137
 9.2 Phenomena, Atomicity, and Quantum Objects 138
 9.3 Bohr’s Epistemology and Quantum Probability 150
 9.4 Einstein and Bohr on Locality and Probability
 in Quantum Mechanics .. 153
 9.5 Postscript on Complementarity and Bohr’s Epistemology
 Beyond Physics .. 158
Contents

References ... 181

Author Index ... 187

Subject Index ... 191