Towards Efficient Designing of Safe Nanomaterials

Innovative Merge of Computational Approaches and Experimental Techniques

Edited by

Tomasz Puzyn
Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, POLAND

Jerzy Leszczynski
Interdisciplinary Nanotoxicity Center, Jackson State University, Jackson, Mississippi, USA
Email: jerzy@icnanotox.org

RSC Publishing
Contents

Chapter 1 **Graphene: Properties, Biomedical Applications and Toxicity**
T. C. Dinadayalane, D. Leszczynska and J. Leszczynski

1.1 Introduction
1.2 Structure and Properties of Graphene
1.2.1 Biomedical Applications of Graphene
1.2.2 Toxicity of Graphene-based Nanomaterials
1.3 Conclusions
Acknowledgements
References

Chapter 2 **In Vitro Toxicity Assessment of Metallic Nanomaterials**
L. K. Braydich-Stolle, N. M. Schaeublin and S. M. Hussain

2.1 Introduction
2.2 Silver Nanomaterials
2.3 Gold Nanomaterials
2.4 Titanium Dioxide Nanomaterials
2.5 Manganese Nanomaterials
2.6 Copper Nanomaterials
2.7 Iron Oxide Nanomaterials
2.8 Aluminium Nanomaterials
2.9 Biocompatibility of Nanomaterials
2.10 Conclusions
References
Chapter 3 *In Vivo Testing of Nanomaterials*
S. Hirano

3.1 Administration Methods
3.1.1 *Via Airways*
3.1.2 Dermal Exposure
3.1.3 Oral and Intravenous Routes
3.1.4 Other Routes
3.2 Kinetics, Dynamics and Translocation of Nanoparticles
3.3 Toxicity Outcome of Nanomaterials
3.3.1 Carbons
3.3.2 Metals and Metal Oxides
3.3.3 Ceramics and Other Materials
3.3.4 Nanofibers
3.4 Summary and Implications

References

Chapter 4 *Nanotoxicity: Are We Confident for Modeling? – An Experimentalist’s Point of View*
D. Berhami and E. Valsami-Jones

4.1 Introduction
4.2 The Complexity of Nano Compared to Bulk
4.2.1 From One Material to Hundreds of Different Nanoparticles
4.2.2 From Hundreds of Sample-specific Datasets to Physico-chemical Properties-based Toxicity
4.2.3 Poorly Produced Nanoparticles vs. Well-defined Samples
4.3 How to Design a Toxicity Experiment
4.3.1 Comparative Nanotoxicity Studies
4.3.2 Property-based Nanotoxicity Studies
4.4 Remaining Challenges of Nanoparticles’ Characterisation
4.4.1 Can a Minimum Set of Suitable Techniques be established?
4.4.2 The Intermediate State: Nanoparticles in Media
4.5 Integration of Datasets in Models: How Can We Contribute?
4.5.1 Data Assessment for Literature Data Modelling
4.5.2 Bridging the Gaps with the Knowledge Acquired in Other Fields
4.6 Conclusions

Acknowledgements

References
Chapter 5 Experimental Approach to the Structure and Properties of Nanoparticles
K. J. Kurzydlowski, M. Lewandowska and M. J. Wozniak

5.1 Introduction
5.2 Imaging Nanoparticles
5.2.1 Electron Microscopy
5.2.2 Scanning Probe Microscopy
5.3 Measuring the Size, Size Distribution and Shape of Nanoparticles
5.3.1 X-ray Diffraction
5.3.2 Laser Diffraction
5.3.3 Image Analysis
5.3.4 Parameters Describing the Size, Size Distribution and Shape of Nanoparticles
5.4 Summary
Further Reading

Chapter 6 Nanoinformatics for Safe-by-Design Engineered Nanomaterials
C. P. Roca, R. Rallo, A. Fernández and F. Giralt

6.1 Introduction
6.2 Nanoinformatics for ENM Data Management
6.3.1 Case Study 1: Self-organizing Maps (SOM) Analysis of ENM Data Sets
6.3.2 Case Study 2: System Biology Approach for the Analysis of Nano–Bio Interactions
6.4 Conclusions
Acknowledgements
References

Chapter 7 Interactions of Carbon Nanostructures and Small Gold Clusters with Nucleic Acid Bases and Watson–Crick Base Pairs and Nanocontacts Involving Mₙ–C₆₀–Mₙ (M = Au, Ag, and Pd; n = 2–8) System: Computational Elucidation of Structures and Characteristics
M. K. Shukla, F. Hill and J. Leszczynski

7.1 Introduction
7.2 Interaction of C₆₀ with Nucleic Acid Bases and Watson–Crick Base Pairs
Chapter 7 Interaction of CNTs with Nucleic Acid Bases and Watson–Crick Base Pairs 115
7.4 Interaction of Small Gold Clusters with the Nucleic Acid Base Guanine and the Watson–Crick Guanine–Cytosine Base Pair 121
7.5 Nanocontacts Involving C_{60} and Small Au, Ag and Pd Atomic Clusters 126
7.5.1 Au–C_{60}–Au System 126
7.5.2 Ag–C_{60}–Ag System 134
7.5.3 Pd–C_{60}–Pd System 137
7.6 Conclusions 140
Acknowledgements 141
References 141

Chapter 8 Theoretical Studies of Interaction in Nanomaterials and Biological Systems 148
H. Tzoupis, A. Avramopoulos, H. Reis, G. Leonis, S. Durdagi, T. Mavromoustakos, G. Megariotis and M. G. Papadopoulos
8.1 Introduction 148
8.2 Li@C_{60} 150
8.3 Sc_{2}@C_{72} 155
8.4 Ti@C_{28} 157
8.5 Analysis of the Binding Energy in Biological Systems 163
8.6 Amino Acid Fullerene Derivatives Bound to HIV-1 PR 166
8.7 MMK16 into COX-2/LOX-5 Enzymes 170
8.8 Aliskiren in Solution and Bound to Renin 172
8.9 Drug–Biosurface Interactions 174
Acknowledgements 178
References 178

Chapter 9 Thermodynamic Cartography and Structure-Property Mapping of Potential Nanohazards 186
A. S. Barnard
9.1 Introduction 186
9.1.1 Strategic Approaches to Predicting Nanohazards 189
9.1.2 Combining Theory, Simulation and Experiment 191
9.2 Thermodynamic Cartography of Nanoscale Titania 193
9.2.1 Comparison with Experiment 200
9.3 Structure-Property Mapping of Photocatalysis 203
9.3.1 Comparison with Experiment 207
Chapter 10 Nano-QSAR: Advances and Challenges

B. Rasulev, A. Gajewicz, T. Puzyn, D. Leszczynski and J. Leszczynski

10.1 Introduction 220
10.2 What Makes a Nanoparticle Unique? 223
10.3 Modeling Nanoparticle Properties 223
10.4 QSAR Methodology and Basic Principles 224
10.5 Extending the QSAR Paradigm to Nanoparticles 225
10.6 Nano-QSAR Modeling of Physico-chemical Properties
 10.6.1 Solubility 228
 10.6.2 Elasticity (Young’s Modulus) 235
10.7 Nanoparticle Toxicity: Concerns and Challenges 241
10.8 Nano-QSAR and Prediction of Toxicity 241
10.9 Applications of Nano-QSAR for Biological Activities 249
10.10 Conclusions 249
Acknowledgements 250
References 250

Chapter 11 Development and Evaluation of Structure–Reactivity Models for Predicting the In Vitro Oxidative Stress of Metal Oxide Nanoparticles

E. Burello and A. Worth

11.1 Introduction 257
11.2 Mechanism of Electron Transfer 259
11.3 Energy Band Structure Calculation of Metal Oxides 261
11.4 Comparison of Model Predictions with Literature Data
 11.4.1 Titania (Rutile and Anatase) 266
 11.4.2 Magnetite and Maghemite 270
 11.4.3 Zinc Oxide 273
 11.4.4 Ceria 275
 11.4.5 Copper Oxide (CuO) 277

Acknowledgements 250
References 250
Chapter 12 Modeling the Environmental Release and Exposure of Engineered Nanomaterials 284
F. Gottschalk and B. Nowack

12.1 Introduction 284
12.2 Environmental Release and Exposure in REACH 286
12.3 Environmental Release and Exposure Assessment for ENMs 289
 12.3.1 Early Qualitative Release/Exposure Analysis 289
 12.3.2 Predictive Quantitative Modeling 294
 12.3.3 Analytical and Experimental Efforts 303
12.4 Adequacy of the REACH Release Parameters for ENMs 305
12.5 Outlook for Future Modeling and Experimental Work 306
Acknowledgement 307
References 307

Chapter 13 Comprehensive Environmental Assessment of Nanotechnologies: a Case Study Using Self-decontaminating Surface Materials 314

13.1 Introduction 314
 13.1.1 Life-cycle Approach for Assessing the Risk of Nanotechnologies 314
 13.1.2 A Case Study for Comprehensive Environmental Assessment 316
 13.1.3 Comprehensive Environmental Assessment Framework 316
13.2 Evaluation of Nanotechnologies 317
 13.2.1 Development and Production 317
 13.2.2 Self-decontaminating Surface Use 318
 13.2.3 Heating, Ventilation, and Air Conditioning (HVAC) Systems 318
 13.2.4 Coatings and Paints 319
13.2.5 Disposal and Recycling 319
13.2.6 Data Gaps and Uncertainty 320
13.3 CEA Conceptual Model to Identify Data Needs 321
13.3.1 Exposure Scenario Characterization and Analysis 321
13.3.2 Surface Analysis of Intact SDS 322
13.3.3 Analysis of Particles Released During Laminar Flow 324
13.3.4 Analysis of Particles Expected During Abrasion or Sanding of the Self-decontaminating Surface 326
13.4 Toxicity of Milled Surface Materials 328
13.4.1 Background Information Supporting Toxicity Data Gaps in Conceptual Model 328
13.4.2 Nanocomposite Particulate Size and Dispersion in Alveolar Fluid 329
13.4.3 Nanoparticle Settling in Alveolar Fluid 333
13.4.4 SDS Dissolution in Alveolar Fluid 337
13.4.5 Toxicity of SDS Particles 337
13.5 Conclusions 342
13.5.1 General Conclusions 342
13.5.2 SDS Airborne Exposure: a Conservative Worst-case Scenario 342
13.5.3 Summary of Findings 343
13.5.4 Conclusions on the Use of CEA 344
Acknowledgements 344
References 344

Subject Index 347