Janus Particle Synthesis, Self-assembly and Applications

Edited by

Shan Jiang
Massachusetts Institute of Technology, Cambridge, MA, USA
Email: sjiang2@mit.edu

Steve Granick
University of Illinois at Urbana-Champaign, IL, USA
Email: sgranick@illinois.edu

RSCPublishing
Contents

Chapter 1 Soft, Nanoscale Janus Particles by Macromolecular Engineering and Molecular Assembly 1
Andreas Walther and Axel H. E. Müller

1.1 Introduction 1
1.2 Janus Particles via Direct Macromolecular Engineering 3
1.3 Janus Particles via Direct Self-assembly and Transformations in Solution 9
1.4 Janus Particles via Transformation of Self-assembled Polymer Bulk Structures 15
1.5 Self-assembly Properties of Polymer based Janus Particles of Different Dimensionality 19
1.6 Application as Structured Particulate Surfactants 23
1.7 Summary and Outlook 25
References 26

Chapter 2 Design, Synthesis and Applications of Dumbbell-like Nanoparticles 29
Chao Wang and Chenjie Xu

2.1 Introduction 29
2.2 Synthesis 30
 2.2.1 DBNPs Containing Noble Metal and Transition Metal Oxide NPs 32
 2.2.2 DBNPs Containing Semiconductor NPs 36
 2.2.3 DBNPs Containing More Than Two Particles 38
2.3 Functional Applications of DBNPs 40
 2.3.1 DBNPs as Heterogeneous Catalysts 40

RSC Smart Materials No. 1
Janus Particle Synthesis, Self-Assembly and Applications
Edited by Shan Jiang and Steve Granick
© The Royal Society of Chemistry 2012
Published by the Royal Society of Chemistry, www.rsc.org

XV
2.3.2 DBNPs as a Multifunctional Platform for Biomedical Applications 41
2.4 Conclusion and Future Directions 48
References 50

Chapter 3 Janus Particles with Distinct Compartments via Electrohydrodynamic Co-jetting 54
Tae-Hong Park and Joerg Lahann

3.1 Introduction 54
3.2 Compartmentalization of Nano- and Microparticles via Electrohydrodynamic Co-jetting 55
3.3 Microsectioning of Compartmentalized Fibers 63
3.4 Hybrid Janus Particles 64
3.5 Selective Surface Modification and Directional Self-assembly 66
3.6 Summary and Outlook 68
Acknowledgements 71
References 71

Chapter 4 Synthesis of Janus Particles by Emulsion-based Methods 74
Chengliang Zhang, Wei Wei, Fuxin Liang and Zhenzhong Yang

4.1 Introduction 74
4.2 Synthesis at a Pickering Emulsion Interface 75
4.3 Synthesis in a Liquid Droplet 79
4.4 Synthesis upon Preformed Particles 83
4.5 Summary and Outlook 87
References 88

Chapter 5 Particle Replication in Non-wetting Templates: a Platform for Engineering Shape- and Size-specific Janus Particles 90
Joseph M. DeSimone, Jie-Yu Wang and Yapei Wang

5.1 Introduction 90
5.2 PRINT Technique 91
5.3 Janus Particles Fabricated by the PRINT Technique 93
5.3.1 Stepwise Vertical Mold Filling 93
5.3.2 Horizontal Stepwise Mold Filling 95
5.4 Patchy PRINT Particles 100
5.4.1 Surface-modified Particles by Chemical Grafting 100
Chapter 6 Theoretical Calculations of Phase Diagrams and Self-assembly in Patchy Colloids

Achille Giacometti, Flavio Romano and Francesco Sciortino

6.1 Introduction 108
6.2 The Kern–Frenkel Model 110
6.3 The Tools of Statistical Physics 112
6.4 Monte Carlo Simulations 112
6.4.1 Canonical NVT and NPT Methods 113
6.4.2 Gibbs Ensemble Method 114
6.4.3 Grand-canonical Ensemble μVT 114
6.4.4 Fluid–Solid Coexistence: Thermodynamic Integration 115
6.5 Integral Equation Theories 115
6.5.1 General Scheme 115
6.5.2 Iterative Procedure 117
6.5.3 Thermodynamics 120
6.6 Barker–Henderson Perturbation Theory 121
6.7 Calculation of the Fluid–Fluid Coexistence Curves for the Integral Equation and Perturbation Theory 124
6.8 Results 124
6.8.1 Fluid–Fluid Coexistence Curves from the RHNC Integral Equation 124
6.8.2 The Janus Limit 127
6.8.3 One Versus Two Patches 129
6.8.4 Evaluation of the Fluid–Fluid Coexistence Curves from Thermodynamic Perturbation Theory 129
6.8.5 Fluid–Solid Coexistence 131
6.8.6 Self-assembly in a Predefined Kagome Lattice 132
6.9 Conclusions and Future Perspectives 134
Acknowledgements 135
References 135
Chapter 7 Self-assembly of Amphiphilic and Dipolar Janus Particles 138
Liang Hong and Angelo Cacciuto

7.1 Introduction 138
7.2 Numerical Methods: Modeling of Janus Particles 141
 7.2.1 Dipolar Janus Particles 141
 7.2.2 Amphiphilic Janus Particles 145
7.3 Experimental Methods 147
 7.3.1 Dipolar Janus Particles 147
 7.3.2 Amphiphilic Janus Particles 148
7.4 Experiments on and Simulations of Janus Self-assembly 149
 7.4.1 Dipolar Janus Particles 150
 7.4.2 Amphiphilic Janus Particles 154
7.5 Off-balance Amphiphilic Janus Particles 161
7.6 Conclusion 164
Acknowledgements 166
References 166

Chapter 8 Self-assembly of Janus Particles Under External Fields 168
Ilona Kretzschmar, Sumit Gangwal, Amar B. Pawar and Orlin D. Velev

8.1 Introduction 168
 8.1.1 Convective Flow and Uniaxial Electric/Magnetic Fields 169
 8.1.2 Biaxial Combinations of Electric and Magnetic Fields 174
8.2 Janus Particle Preparation and Cell Set-up for Field Assembly 176
 8.2.1 Materials 176
 8.2.2 Janus Particle Preparation 177
 8.2.3 Assembly Cells for Field Assembly 178
8.3 Field Assembly of Janus Particles 178
 8.3.1 Janus Particles in Convective Flow Fields 179
 8.3.2 Janus Particles in Electric Fields 183
 8.3.3 Janus Particles in Magnetic Fields 191
 8.3.4 Janus Particles in Biaxial Fields 195
8.4 Future Outlook 197
Acknowledgements 199
References 199
Chapter 9 DNA Self-Assembly: From Nanostructures to Macro Engineering 204
Yi Chen, Abigail K. R. Lytton-Jean and Hyukjin Lee

9.1 Introduction 204
9.2 DNA Nanomachines 206
 9.2.1 Conformational Changes Induced by Environmental Changes 206
 9.2.2 Motions Fueled by Strand Displacement 208
 9.2.3 Autonomous Motion Powered by Enzymatic Activity 210
9.3 DNA-enabled Self-assembly of Inorganic/Organic Nanoparticles 211
 9.3.1 Properties of DNA-modified Gold Nanoparticles 212
 9.3.2 Directed Self-assembly of DNA-modified Gold Nanoparticles 214
9.4 Micro- to Macro-engineering by Self-assembly 217
9.5 Conclusion 220
References 220

Chapter 10 Janus Particle Localization and Tracking for Studies of Particle Dynamics 223
Stephen M. Anthony and Minsu Kim

10.1 Introduction 223
10.2 Isolated Particle Localization 225
 10.2.1 Spatial Localization 225
 10.2.2 Angular Localization 227
 10.2.3 Experimental Validation 230
10.3 Optically Overlapping Particle Localization 232
 10.3.1 Image Preprocessing 235
 10.3.2 Overlapping Object Recognition 236
 10.3.3 Separation of Overlapping Janus Spheres 236
 10.3.4 Refining the Position and Extracting the Orientation 239
10.4 Probing Translational and Rotational Dynamics 239
10.5 Conclusion 242
Acknowledgements 242
References 242
Chapter 11 Janus Balance and Emulsions Stabilized by Janus Particles
Shan Jiang and Steve Granick

11.1 Introduction 244
11.2 Janus Particles at a Planar Interface 246
11.3 Janus Balance 247
 11.3.1 Contact Angle of Janus Particles at an Interface 248
 11.3.2 Adsorption Energy 249
 11.3.3 Quantification of Janus Balance 250
 11.3.4 An Example 251
 11.3.5 Outlook and Potential Implications 252
11.4 Emulsions Stabilized by Janus Particles 253
 11.4.1 An Example 253
 11.4.2 Other Progress 255
Acknowledgement 255
References 256

Chapter 12 Applications of Janus and Anisotropic Particles for Drug Delivery
Zhiyong Poon and Paula T. Hammond

12.1 Overview 257
12.2 Nanoparticle Design to Overcome Barriers to Drug Delivery 258
12.3 Examples of Nanoparticle Systems: Liposomes, Micelles and Dendrimers 260
12.4 Anisotropic, Patchy and Janus Particles in Systemic Drug Delivery 262
 12.4.1 Particles with Anisotropic, Janus or Patchy Surfaces 262
 12.4.2 Interior Particle Compartmentalization 267
 12.4.3 Anisotropic Geometries 267
12.5 Conclusion 271
References 272