Advanced Quantum Mechanics
A practical guide

YULI V. NAZAROV
Delft University of Technology

JEROEN DANON
Free University of Berlin

CAMBRIDGE UNIVERSITY PRESS
Contents

Figure Credits page x
Preface xi

PART I SECOND QUANTIZATION 1

1 Elementary quantum mechanics 3
 1.1 Classical mechanics 3
 1.2 Schrödinger equation 4
 1.3 Dirac formulation 7
 1.4 Schrödinger and Heisenberg pictures 11
 1.5 Perturbation theory 13
 1.6 Time-dependent perturbation theory 14
 1.6.1 Fermi’s golden rule 18
 1.7 Spin and angular momentum 20
 1.7.1 Spin in a magnetic field 24
 1.7.2 Two spins 25
 1.8 Two-level system: The qubit 26
 1.9 Harmonic oscillator 29
 1.10 The density matrix 31
 1.11 Entanglement 33
Exercises 38
Solutions 41

2 Identical particles 43
 2.1 Schrödinger equation for identical particles 43
 2.2 The symmetry postulate 47
 2.2.1 Quantum fields 48
 2.3 Solutions of the N-particle Schrödinger equation 50
 2.3.1 Symmetric wave function: Bosons 52
 2.3.2 Antisymmetric wave function: Fermions 54
 2.3.3 Fock space 56
Exercises 59
Solutions 61

3 Second quantization 63
 3.1 Second quantization for bosons 63
 3.1.1 Commutation relations 64
 3.1.2 The structure of Fock space 65
3.2 Field operators for bosons
 3.2.1 Operators in terms of field operators 67
 3.2.2 Hamiltonian in terms of field operators 70
 3.2.3 Field operators in the Heisenberg picture 72
3.3 Why second quantization? 72
3.4 Second quantization for fermions
 3.4.1 Creation and annihilation operators for fermions 75
 3.4.2 Field operators 78
3.5 Summary of second quantization 79
Exercises 82
Solutions 83

PART II EXAMPLES 87

4 Magnetism
4.1 Non-interacting Fermi gas 90
4.2 Magnetic ground state
 4.2.1 Trial wave function 92
4.3 Energy
 4.3.1 Kinetic energy 93
 4.3.2 Potential energy 94
 4.3.3 Energy balance and phases 97
4.4 Broken symmetry 98
4.5 Excitations in ferromagnetic metals
 4.5.1 Single-particle excitations 99
 4.5.2 Electron–hole pairs 102
 4.5.3 Magnons 103
 4.5.4 Magnon spectrum 105
Exercises 109
Solutions 110

5 Superconductivity
5.1 Attractive interaction and Cooper pairs
 5.1.1 Trial wave function 116
 5.1.2 Nambu boxes 118
5.2 Energy
 5.2.1 Energy minimization 120
5.3 Particles and quasiparticles 123
5.4 Broken symmetry 125
Exercises 128
Solutions 132

6 Superfluidity
6.1 Non-interacting Bose gas 135
9 Radiation and matter
9.1 Transition rates
9.2 Emission and absorption: General considerations
9.2.1 Master equations
9.2.2 Equilibrium and black-body radiation
9.3 Interaction of matter and radiation
9.4 Spontaneous emission by atoms
9.4.1 Dipole approximation
9.4.2 Transition rates
9.4.3 Selection rules
9.5 Blue glow: Cherenkov radiation
9.5.1 Emission rate and spectrum of Cherenkov radiation
9.6 Bremsstrahlung
9.7 Processes in lasers
9.7.1 Master equation for lasers
9.7.2 Photon number distribution
Exercises
Solutions

10 Coherent states
10.1 Superpositions
10.2 Excitation of an oscillator
10.3 Properties of the coherent state
10.4 Back to the laser
10.4.1 Optical coherence time
10.4.2 Maxwell–Bloch equations
10.5 Coherent states of matter
10.5.1 Cooper pair box
Exercises
Solutions

PART IV DISSIPATIVE QUANTUM MECHANICS

11 Dissipative quantum mechanics
11.1 Classical damped oscillator
11.1.1 Dynamical susceptibility
11.1.2 Damped electric oscillator
11.2 Quantum description
11.2.1 Difficulties with the quantum description
11.2.2 Solution: Many degrees of freedom
11.2.3 Boson bath
11.2.4 Quantum equations of motion
11.2.5 Diagonalization

Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 Time-dependent fluctuations</td>
<td>279</td>
</tr>
<tr>
<td>11.3.1 Fluctuation–dissipation theorem</td>
<td>280</td>
</tr>
<tr>
<td>11.3.2 Kubo formula</td>
<td>281</td>
</tr>
<tr>
<td>11.4 Heisenberg uncertainty relation</td>
<td>282</td>
</tr>
<tr>
<td>11.4.1 Density matrix of a damped oscillator</td>
<td>283</td>
</tr>
<tr>
<td>Exercises</td>
<td>286</td>
</tr>
<tr>
<td>Solutions</td>
<td>288</td>
</tr>
<tr>
<td>12 Transitions and dissipation</td>
<td>290</td>
</tr>
<tr>
<td>12.1 Complicating the damped oscillator: Towards a qubit</td>
<td>290</td>
</tr>
<tr>
<td>12.1.1 Delocalization criterion</td>
<td>292</td>
</tr>
<tr>
<td>12.2 Spin–boson model</td>
<td>292</td>
</tr>
<tr>
<td>12.3 Shifted oscillators</td>
<td>294</td>
</tr>
<tr>
<td>12.4 Shake-up and $P(E)$</td>
<td>296</td>
</tr>
<tr>
<td>12.5 Orthogonality catastrophe</td>
<td>297</td>
</tr>
<tr>
<td>12.6 Workout of $P(E)$</td>
<td>298</td>
</tr>
<tr>
<td>12.7 Transition rates and delocalization</td>
<td>301</td>
</tr>
<tr>
<td>12.8 Classification of environments</td>
<td>302</td>
</tr>
<tr>
<td>12.8.1 Subohmic</td>
<td>304</td>
</tr>
<tr>
<td>12.8.2 Ohmic</td>
<td>305</td>
</tr>
<tr>
<td>12.8.3 Superohmic</td>
<td>306</td>
</tr>
<tr>
<td>12.9 Vacuum as an environment</td>
<td>307</td>
</tr>
<tr>
<td>Exercises</td>
<td>310</td>
</tr>
<tr>
<td>Solutions</td>
<td>312</td>
</tr>
</tbody>
</table>

PART V RELATIVISTIC QUANTUM MECHANICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Relativistic quantum mechanics</td>
<td>317</td>
</tr>
<tr>
<td>13.1 Principles of the theory of relativity</td>
<td>317</td>
</tr>
<tr>
<td>13.1.1 Lorentz transformation</td>
<td>318</td>
</tr>
<tr>
<td>13.1.2 Minkowski spacetime</td>
<td>321</td>
</tr>
<tr>
<td>13.1.3 The Minkowski metric</td>
<td>323</td>
</tr>
<tr>
<td>13.1.4 Four-vectors</td>
<td>324</td>
</tr>
<tr>
<td>13.2 Dirac equation</td>
<td>326</td>
</tr>
<tr>
<td>13.2.1 Solutions of the Dirac equation</td>
<td>330</td>
</tr>
<tr>
<td>13.2.2 Second quantization</td>
<td>333</td>
</tr>
<tr>
<td>13.2.3 Interaction with the electromagnetic field</td>
<td>336</td>
</tr>
<tr>
<td>13.3 Quantum electrodynamics</td>
<td>337</td>
</tr>
<tr>
<td>13.3.1 Hamiltonian</td>
<td>338</td>
</tr>
<tr>
<td>13.3.2 Perturbation theory and divergences</td>
<td>339</td>
</tr>
<tr>
<td>13.4 Renormalization</td>
<td>343</td>
</tr>
<tr>
<td>Exercises</td>
<td>348</td>
</tr>
<tr>
<td>Solutions</td>
<td>351</td>
</tr>
</tbody>
</table>

Index 352