CONTENTS

PREFACE ix

1. Enzymes Involved in Redox Reactions: Natural Sources and Mechanistic Overview 1
 1.1 Motivation: Green Chemistry and Biocatalysis 1
 1.2 Sources of Biocatalysts 2
 1.2.1 Plants and Animals as Sources of Redox Biocatalysts 3
 1.2.2 Wild-Type Microorganisms 7
 1.2.2.1 Yeasts 7
 1.2.2.2 Fungi 8
 1.2.2.3 Bacteria 8
 1.2.3 Metagenomic Assessments 9
 1.3 Overview of Redox Enzymes 10
 1.3.1 Dehydrogenases 13
 1.3.1.1 Zn-Dependent Dehydrogenases 14
 1.3.1.2 Flavin-Dependent Dehydrogenases 15
 1.3.1.3 Pterin-Dependent Dehydrogenases 16
 1.3.1.4 Quinoprotein Dehydrogenases 17
 1.3.1.5 Dehydrogenases without Prosthetic Group 18
 1.3.2 Oxygenases 19
 1.3.2.1 Monooxygenases 20
 1.3.2.2 Dioxygenases 38
 1.3.3 Oxidases 50
 1.3.3.1 Iron-Containing Oxidases 50
 1.3.3.2 Copper-Containing Oxidases 51
 1.3.3.3 Flavin-Dependent Oxidases 56
 1.3.4 Peroxidases 61
 1.4 Concluding Remarks 64
 References 64

2. Natural Cofactors and Their Regeneration Strategies 86
 2.1 Types of Natural Cofactors—Mechanisms 86
 2.2 Cofactor Regeneration 88
 2.2.1 Enzymatic Regeneration of Reduced Cofactors 88
2.2.1.1 Substrate-Assisted Method 88
2.2.1.2 Enzyme-Assisted Method 89
2.2.2 Enzymatic Regeneration of Oxidized Cofactors 92
2.2.3 Chemical Regeneration of Cofactors 94
2.2.4 Electrochemical Regeneration of Cofactors 95
2.2.5 Photochemical Regeneration of Cofactors 96
2.3 Concluding Remarks 97
References 98

3. Reactions Involving Dehydrogenases 101
3.1 General Considerations 101
3.2 Reduction of Carbonyl Groups 105
3.2.1 Reduction of Aliphatic and Aromatic Ketones 106
3.2.2 Reduction of α- and β-keto Esters and Derivatives 119
3.2.3 Reduction of Diketones 126
3.2.4 Reduction of Aldehydes 128
3.3 Racemization and Deracemization Reactions 130
3.4 Preparation of Amines 135
3.5 Reduction of C–C Double Bonds 142
3.6 Oxidation Reactions 152
3.7 Dehydrogenase-Catalyzed Redox Reactions in Natural Products 159
3.8 Concluding Remarks 164
References 165

4. Reactions Involving Oxygenases 180
4.1 Monooxygenase-Catalyzed Reactions 180
4.1.1 Hydroxylation of Aliphatic Compounds 181
4.1.2 Hydroxylation of Aromatic Compounds 187
4.1.3 Baeyer–Villiger Reactions 189
4.1.3.1 Classification and Metabolic Role of BVMOs 192
4.1.3.2 Isolated Enzymes versus Whole-Cell Systems (Wild-Type and Recombinant Microorganisms) 194
4.1.3.3 Substrate Profile of Available Baeyer–Villiger Monooxygenases 195
4.1.3.4 Synthetic Applications of BVMOs 201
4.1.4 Epoxidation of Alkenes 240
4.2 Dioxygenase-Catalyzed Reactions 251
4.2.1 Aromatic Dioxygenases 251
4.2.1.1 Dihydroxylation of Aromatic Compounds 251
4.2.1.2 Other Oxidation Reactions Performed by Aromatic Dioxygenases 274
4.2.2 Miscellaneous Dioxygenases 279
4.2.2.1 Lipoygenase 279
5. Reactions Involving Oxidases and Peroxidases

5.1 Oxidase-Catalyzed Reactions
 5.1.1 Oxidases Acting on C–O Bonds
 5.1.1.1 Galactose Oxidase
 5.1.1.2 Pyranose Oxidase
 5.1.1.3 Alcohol Oxidase
 5.1.1.4 Glucose Oxidase
 5.1.1.5 Glycolate Oxidase
 5.1.2 Laccases and Tyrosinases (Phenol Oxidases)
 5.1.2.1 Laccase
 5.1.2.2 Tyrosinase and Other Polyphenol Oxidases
 5.1.3 Oxidases Acting on C–N Bonds
 5.1.3.1 d-Amino Acid Oxidase
 5.1.3.2 l-Amino Acid Oxidase
 5.1.3.3 Monoamine Oxidase
 5.1.3.4 Copper Amine Oxidases
 5.1.4 Miscellaneous
 5.1.4.1 Cholesterol Oxidase
 5.1.4.2 Vanillyl Alcohol Oxidase
 5.1.4.3 Alditol Oxidase

5.2 Peroxidase-Catalyzed Reactions
 5.2.1 Peroxidase Mediated Transformations
 5.2.1.1 Oxidative Dehydrogenation (2 RH + H₂O₂ → 2 R⁺ + 2 H₂O → R-R)
 5.2.1.2 Oxidative Halogenation (RH + H₂O₂ + X⁺ + H⁺ → RX + 2 H₂O)
 5.2.1.3 Oxygen-Transfer Reactions (RH + H₂O₂ → ROH + H₂O)

5.3 Concluding Remarks
References

6. Hydrolase-Mediated Oxidations
 6.1 Hydrolase Promiscuity and in situ Peracid Formation. Perhydrolases vs. Hydrolases. Other Promiscuous Hydrolase-Mediated Oxidations
 6.2 Hydrolase-Mediated Bulk Oxidations in Aqueous Media (e.g., Bleaching, Disinfection, etc.)
 6.3 Lipase-Mediated Oxidations: Prileshajev Epoxidations and Baeyer–Villiger Reactions
 6.4 Hydrolase-Mediated Oxidation and Processing of Lignocellulosic Materials
6.5 Concluding Remarks References 448

7. Bridging Gaps: From Enzyme Discovery to Bioprocesses 453
7.1 Context 453
7.2 Enzyme Directed Evolution and High-Throughput-Screening of Biocatalysts 454
7.3 Successful Case: Baker’s Yeast Redox Enzymes, Their Cloning, and Separate Overexpression 467
7.4 Whole-Cells vs. Isolated Enzymes: Medium Engineering 473
7.5 Beyond: Multistep Domino Biocatalytic Processes 477
7.6 Concluding Remarks References 482

8. Industrial Applications of Biocatalytic Redox Reactions: From Academic Curiosities to Robust Processes 487
8.1 Motivation: Drivers for Industrial Biocatalytic Processes 487
8.2 Key Aspects in Industrial Biocatalytic Processes 488
8.3 Industrial Biocatalytic Redox Processes: Free Enzymes 492
8.4 Industrial Biocatalytic Redox Processes—Whole-Cells: The “Designer Bug” Concept and Beyond (Metabolic Engineering) 500
8.5 Concluding Remarks and Future Perspectives References 511

INDEX 521