PEM FUEL CELLS
THEORY AND PRACTICE

FRANO BARBIR

ELSEVIER
1 Introduction
1.1. What Is a Fuel Cell? 1
1.2. A Very Brief History of Fuel Cells 4
1.3. Types of Fuel Cells 8
1.4. How Does a PEM Fuel Cell Work? 10
1.5. Why Do We Need Fuel Cells? 12
1.6. Fuel Cell Applications 13
References 16

2 Fuel Cell Basic Chemistry and Thermodynamics 17
2.1. Basic Reactions 17
2.2. Heat of Reaction 17
2.3. Higher and Lower Heating Value of Hydrogen 18
2.4. Theoretical Electrical Work 19
2.5. Theoretical Fuel Cell Potential 20
2.6. Effect of Temperature 21
2.7. Theoretical Fuel Cell Efficiency 24
2.8. Carnot Efficiency Myth 26
2.9. Effect of Pressure 28
2.10. Summary 29
Problems 30
Quiz 31
References 32

3 Fuel Cell Electrochemistry 33
3.1. Electrode Kinetics 33
3.2. Voltage Losses 39
3.3. Cell Potential: Polarization Curve 48
3.4. Distribution of Potential Across a Fuel Cell 50
3.5. Sensitivity of Parameters in Polarization Curve 52
3.6. Fuel Cell Efficiency 59
3.7. Implications and Use of Fuel Cell Polarization Curve 61
4 Main Cell Components, Material Properties, and Processes 73
 4.1. Cell Description 73
 4.2. Membrane 75
 Solution 90
 4.3. Electrodes 92
 4.4. Gas Diffusion Layer 97
 4.5. Bipolar Plates 104
 Problems 112
 Quiz 113
 References 115

5 Fuel Cell Operating Conditions 119
 5.1. Operating Pressure 119
 5.2. Operating Temperature 121
 5.3. Reactant Flow Rates 124
 5.4. Reactant Humidity 130
 5.5. Fuel Cell Mass Balance 144
 5.6. Fuel Cell Energy Balance 149
 Problems 154
 Quiz 155
 References 157

6 Stack Design 159
 6.1. Sizing a Fuel Cell Stack 159
 6.2. Stack Configuration 163
 6.3. Uniform Distribution of Reactants to Each Cell 167
 6.4. Uniform Distribution of Reactants Inside Each Cell 172
 Solution 187
 6.5. Heat Removal from a Fuel Cell Stack 189
 Solution 194
 Solution 199
 6.6. Stack Clamping 208
<table>
<thead>
<tr>
<th>Problem</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems</td>
<td>211</td>
</tr>
<tr>
<td>Quiz</td>
<td>212</td>
</tr>
<tr>
<td>References</td>
<td>213</td>
</tr>
</tbody>
</table>

7 Fuel Cell Modeling

7.1. Theory and Governing Equations | 218
7.2. Modeling Domains | 228
7.3. Modeling Examples | 231
7.4. Conclusions | 259
Problems | 259
Quiz | 260
References | 261

8 Fuel Cell Diagnostics

8.1. Electrochemical Techniques | 266
8.2. Physical and Chemical Methods | 282
8.3. Conclusions | 295
Problems | 297
Quiz | 297
References | 299

9 Fuel Cell System Design

9.1. Hydrogen/Oxygen Systems | 305
9.2. Hydrogen/Air Systems | 314
Solution | 317
Solution | 318
9.3. Fuel Cell Systems with Fuel Processors | 333
9.4. Electrical Subsystem | 358
9.5. System Efficiency | 364
Problems | 368
Quiz | 369
References | 371

10 Fuel Cell Applications

10.1. Transportation Applications | 373
10.2. Stationary Power | 392
10.3. Backup Power | 414
10.4. Fuel Cells for Small Portable Power | 419
10.5. Regenerative Fuel Cells and Their Applications | 422
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems</td>
<td>429</td>
</tr>
<tr>
<td>Quiz</td>
<td>431</td>
</tr>
<tr>
<td>References</td>
<td>432</td>
</tr>
<tr>
<td>11 Durability of Polymer Electrolyte Fuel Cells</td>
<td>435</td>
</tr>
<tr>
<td>11.1. Introduction</td>
<td>435</td>
</tr>
<tr>
<td>11.2. Scope and Organization of This Chapter</td>
<td>436</td>
</tr>
<tr>
<td>11.3. Types of Performance Losses</td>
<td>438</td>
</tr>
<tr>
<td>11.4. PEFC Components Associated with Different Types of Losses</td>
<td>441</td>
</tr>
<tr>
<td>11.5. Operating Conditions</td>
<td>447</td>
</tr>
<tr>
<td>11.6. Accelerated Test Protocols</td>
<td>460</td>
</tr>
<tr>
<td>11.7. Conclusions and Future Outlook</td>
<td>464</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>466</td>
</tr>
<tr>
<td>References</td>
<td>466</td>
</tr>
<tr>
<td>12 Future of Fuel Cells and Hydrogen</td>
<td>469</td>
</tr>
<tr>
<td>12.1. Introduction</td>
<td>469</td>
</tr>
<tr>
<td>12.2. A Brief History of Hydrogen as a Fuel</td>
<td>470</td>
</tr>
<tr>
<td>12.3. Hydrogen Energy Technologies</td>
<td>472</td>
</tr>
<tr>
<td>12.4. Is the Present Global Energy System Sustainable?</td>
<td>487</td>
</tr>
<tr>
<td>12.5. Predicting the Future</td>
<td>491</td>
</tr>
<tr>
<td>12.6. Sustainable Energy System of the Future</td>
<td>495</td>
</tr>
<tr>
<td>12.7. Transition to Hydrogen or a "Hydricity Economy"</td>
<td>500</td>
</tr>
<tr>
<td>12.8. The Coming Energy Revolution?</td>
<td>503</td>
</tr>
<tr>
<td>12.9. Conclusions</td>
<td>505</td>
</tr>
<tr>
<td>References</td>
<td>505</td>
</tr>
<tr>
<td>Index</td>
<td>509</td>
</tr>
</tbody>
</table>