Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>About the Authors</td>
<td>xix</td>
</tr>
</tbody>
</table>

Chapter 1 The Role of Petroleum Production Engineering
1.1 Introduction
1.2 Components of the Petroleum Production System
1.2.1 Volume and Phase of Reservoir Hydrocarbons
1.2.2 Permeability
1.2.3 The Zone near the Well, the Sandface, and the Well Completion
1.2.4 The Well
1.2.5 The Surface Equipment
1.3 Well Productivity and Production Engineering
1.3.1 The Objectives of Production Engineering
1.3.2 Organization of the Book
1.4 Units and Conversions
References

Chapter 2 Production from Undersaturated Oil Reservoirs
2.1 Introduction
2.2 Steady-State Well Performance
2.3 Transient Flow of Undersaturated Oil
2.4 Pseudosteady-State Flow
2.4.1 Transition to Pseudosteady State from Infinite Acting Behavior
2.5 Wells Draining Irregular Patterns
2.6 Inflow Performance Relationship
2.7 Effects of Water Production, Relative Permeability
2.8 Summary of Single-Phase Oil Inflow Performance Relationships
References
Problems
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Production from Two-Phase Reservoirs</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of Saturated Oil</td>
<td>42</td>
</tr>
<tr>
<td>3.2.1</td>
<td>General Properties of Saturated Oil</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Property Correlations for Two-Phase Systems</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Two-Phase Flow in a Reservoir</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Oil Inflow Performance for a Two-Phase Reservoir</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Generalized Vogel Inflow Performance</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Fetkovich’s Approximation</td>
<td>57</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Production from Natural Gas Reservoirs</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Gas Gravity</td>
<td>61</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Real Gas Law</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlations and Useful Calculations for Natural Gases</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Pseudocritical Properties from Gas Gravity</td>
<td>66</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Presence of Nonhydrocarbon Gases</td>
<td>68</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Gas Compressibility Factor Correction for Nonhydrocarbon Gases</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Gas Viscosity</td>
<td>71</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Gas Formation Volume Factor</td>
<td>74</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Gas Isothermal Compressibility</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Approximation of Gas Well Deliverability</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Gas Well Deliverability for Non-Darcy Flow</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Transient Flow of a Gas Well</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Production from Horizontal Wells</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Steady-State Well Performance</td>
<td>97</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The Joshi Model</td>
<td>97</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The Furui Model</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Pseudosteady-State Flow</td>
<td>103</td>
</tr>
</tbody>
</table>
5.3.1 The Babu and Odeh Model 103
5.3.2 The Economides et al. Model 109
5.4 Inflow Performance Relationship for Horizontal Gas Wells 114
5.5 Two-Phase Correlations for Horizontal Well Inflow 115
5.6 Multilateral Well Technology 116
References 117
Problems 119

Chapter 6 The Near-Wellbore Condition and Damage Characterization; Skin Effects 121
6.1 Introduction 121
6.2 Hawkins’ Formula 122
6.3 Skin Components for Vertical and Inclined Wells 126
6.4 Skin from Partial Completion and Well Deviation 128
6.5 Horizontal Well Damage Skin Effect 134
6.6 Well Completion Skin Factors 138
 6.6.1 Cased, Perforated Completions 138
 6.6.2 Slotted or Perforated Liner Completions 146
 6.6.3 Gravel Pack Completions 148
6.7 Formation Damage Mechanisms 151
 6.7.1 Particle Plugging of Pore Spaces 151
 6.7.2 Mechanisms for Fines Migration 154
 6.7.3 Chemical Precipitation 154
 6.7.4 Fluid Damage: Emulsions, Relative Permeability, and Wettability Changes 155
 6.7.5 Mechanical Damage 156
 6.7.6 Biological Damage 157
6.8 Sources of Formation Damage During Well Operations 157
 6.8.1 Drilling Damage 157
 6.8.2 Completion Damage 159
 6.8.3 Production Damage 161
 6.8.4 Injection Damage 162
References 163
Problems 165
Chapter 7 Wellbore Flow Performance 167

7.1 Introduction 167

7.2 Single-Phase Flow of an Incompressible, Newtonian Fluid 168

- 7.2.1 Laminar or Turbulent Flow 168
- 7.2.2 Velocity Profiles 169
- 7.2.3 Pressure-Drop Calculations 172
- 7.2.4 Annular Flow 179

7.3 Single-Phase Flow of a Compressible, Newtonian Fluid 179

7.4 Multiphase Flow in Wells 184

- 7.4.1 Holdup Behavior 185
- 7.4.2 Two-Phase Flow Regimes 187
- 7.4.3 Two-Phase Pressure Gradient Models 191
- 7.4.4 Pressure Traverse Calculations 210

References 214

Problems 215

Chapter 8 Flow in Horizontal Wellbores, Wellheads, and Gathering Systems 217

8.1 Introduction 217

8.2 Flow in Horizontal Pipes 217

- 8.2.1 Single-Phase Flow: Liquid 217
- 8.2.2 Single-Phase Flow: Gas 218
- 8.2.3 Two-Phase Flow 220
- 8.2.4 Pressure Drop through Pipe Fittings 236

8.3 Flow through Chokes 236

- 8.3.1 Single-Phase Liquid Flow 240
- 8.3.2 Single-Phase Gas Flow 241
- 8.3.3 Gas–Liquid Flow 243

8.4 Surface Gathering Systems 247

8.5 Flow in Horizontal Wellbores 250

- 8.5.1 Importance of Wellbore Pressure Drop 250
- 8.5.2 Wellbore Pressure Drop for Single-Phase Flow 252
- 8.5.3 Wellbore Pressure Drop for Two-Phase Flow 252

References 256

Problems 258
Chapter 9 Well Deliverability 261
 9.1 Introduction 261
 9.2 Combination of Inflow Performance Relationship (IPR) and Vertical Flow Performance (VFP) 262
 9.3 IPR and VFP of Two-Phase Reservoirs 268
 9.4 IPR and VFP in Gas Reservoirs 270
 Problems 274

Chapter 10 Forecast of Well Production 275
 10.1 Introduction 275
 10.2 Transient Production Rate Forecast 275
 10.3 Material Balance for an Undersaturated Reservoir and Production Forecast Under Pseudosteady-State Conditions 277
 10.4 The General Material Balance for Oil Reservoirs 281
 10.4.1 The Generalized Expression 281
 10.4.2 Calculation of Important Reservoir Variables 282
 10.5 Production Forecast from a Two-Phase Reservoir: Solution Gas Drive 286
 10.6 Gas Material Balance and Forecast of Gas Well Performance 294
 References 296
 Problems 297

Chapter 11 Gas Lift 299
 11.1 Introduction 299
 11.2 Well Construction for Gas Lift 299
 11.3 Continuous Gas-Lift Design 303
 11.3.1 Natural versus Artificial Flowing Gradient 303
 11.3.2 Pressure of Injected Gas 304
 11.3.3 Point of Gas Injection 305
 11.3.4 Power Requirements for Gas Compressors 309
 11.4 Unloading Wells with Multiple Gas-Lift Valves 310
 11.5 Optimization of Gas-Lift Design 312
 11.5.1 Impact of Increase of Gas Injection Rate, Sustaining of Oil Rate with Reservoir Pressure Decline 312
 11.5.2 Maximum Production Rate with Gas Lift 314
14.3.3 Reaction of HF with Sandstone Minerals 455
14.3.4 Reactions of Fluosilicic Acid with Sandstone Minerals 460
14.4 Acid Transport to the Mineral Surface 460
14.5 Precipitation of Acid Reaction Products 461
References 464
Problems 466

Chapter 15 Sandstone Acidizing Design 469
15.1 Introduction 469
15.2 Acid Selection 470
15.3 Acid Volume and Injection Rate 472
15.3.1 Competing Factors Influencing Treatment Design 472
15.3.2 Sandstone Acidizing Models 472
15.3.3 Monitoring the Acidizing Process, the Optimal Rate Schedule 486
15.4 Fluid Placement and Diversion 496
15.4.1 Mechanical Acid Placement 496
15.4.2 Ball Sealers 497
15.4.3 Particulate Diverting Agents 497
15.4.4 Viscous Diversion 508
15.5 Preflush and Postflush Design 509
15.5.1 The HCl Preflush 509
15.5.2 The Postflush 511
15.6 Acid Additives 512
15.7 Acidizing Treatment Operations 512
References 513
Problems 516

Chapter 16 Carbonate Acidizing Design 519
16.1 Introduction 519
16.2 Wormhole Formation and Growth 522
16.3 Wormhole Propagation Models 525
16.3.1 The Volumetric Model 526
16.3.2 The Buijse-Glasbergen Model 529
16.3.3 The Furui et al. Model 531
16.4 Matrix Acidizing Design for Carbonates 535
16.4.1 Acid Type and Concentration 535
16.4.2 Acid Volume and Injection Rate 536
16.4.3 Monitoring the Acidizing Process 538
16.4.4 Fluid Diversion in Carbonates 540
16.5 Acid Fracturing 541
16.5.1 Acid Penetration in Fractures 542
16.5.2 Acid Fracture Conductivity 545
16.5.3 Productivity of an Acid-Fractured Well 552
16.5.4 Comparison of Propped and Acid Fracture Performance 553
16.6 Acidizing of Horizontal Wells 554
References 555
Problems 558

Chapter 17 Hydraulic Fracturing for Well Stimulation 559
17.1 Introduction 559
17.2 Length, Conductivity, and Equivalent Skin Effect 562
17.3 Optimal Fracture Geometry for Maximizing the Fractured Well Productivity 566
17.3.1 Unified Fracture Design 567
17.4 Fractured Well Behavior in Conventional Low-Permeability Reservoirs 574
17.4.1 Infinite Fracture Conductivity Performance 574
17.4.2 Finite Fracture Conductivity Performance 578
17.5 The Effect of Non-Darcy Flow on Fractured Well Performance 579
17.6 Fractured Well Performance for Unconventional Tight Sand or Shale Reservoirs 585
17.6.1 Tight Gas Sands 586
17.6.2 Shale 586
17.7 Choke Effect for Transverse Hydraulic Fractures 592
References 594
Problems 597

Chapter 18 The Design and Execution of Hydraulic Fracturing Treatments 601
18.1 Introduction 601
18.2 The Fracturing of Reservoir Rock 602
18.2.1 In-Situ Stresses 602
18.2.2 Breakdown Pressure 604
18.2.3 Fracture Direction 606
Chapter 18 Fracture Geometry

18.3 Fracture Geometry
- 18.3.1 Hydraulic Fracture Width with the PKN Model
- 18.3.2 Fracture Width with a Non-Newtonian Fluid
- 18.3.3 Fracture Width with the KGD Model
- 18.3.4 Fracture Width with the Radial Model
- 18.3.5 Tip Screenout (TSO) Treatments
- 18.3.6 Creating Complex Fracture Geometries

18.4 The Created Fracture Geometry and Net Pressure
- 18.4.1 Net Fracturing Pressure
- 18.4.2 Height Migration
- 18.4.3 Fluid Volume Requirements
- 18.4.4 Proppant Schedule
- 18.4.5 Propped Fracture Width

18.5 Fracturing Fluids
- 18.5.1 Rheological Properties
- 18.5.2 Frictional Pressure Drop during Pumping

18.6 Proppants and Fracture Conductivity
- 18.6.1 Propped Fracture Conductivity
- 18.6.2 Proppant Transport

18.7 Fracture Diagnostics
- 18.7.1 Fracturing Pressure Analysis
- 18.7.2 Fracture Geometry Measurement

18.8 Fracturing Horizontal Wells
- 18.8.1 Fracture Orientation in Horizontal Well Fracturing
- 18.8.2 Well Completions for Multiple Fracturing

References

Problems

Chapter 19 Sand Management

19.1 Introduction

19.2 Sand Flow Modeling
- 19.2.1 Factors Affecting Formation Sand Production
- 19.2.2 Sand Flow in the Wellbore

19.3 Sand Management
- 19.3.1 Sand Production Prevention
- 19.3.2 Cavity Completion