<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1L-A</td>
<td>Circuits for Biomedical Systems I</td>
<td>Timothy Constandinou, Imperial College London, Nitish Thakor, Johns Hopkins University</td>
</tr>
<tr>
<td>A1L-A.1</td>
<td>A 4 μW/Ch Analog Front-End Module with Moderate Inversion and Power-Scalable Sampling Operation for 3-D Neural Microsystems</td>
<td>Khaled Al-Ashmouny, University of Michigan, Sun-II Chang, University of Michigan, Euisik Yoon, University of Michigan, Ann Arbor</td>
</tr>
<tr>
<td>A1L-A.2</td>
<td>A Highly-Accurate Low-Power CMOS Potentiostat for Implantable Biosensors</td>
<td>Milad Razzaghpour, KTH Royal Institute of Technology, Saul Rodriguez, KTH Royal Institute of Technology, Eduard Alarcon, Universitat Politècnica de Catalunya, Ana Rusu, KTH Royal Institute of Technology</td>
</tr>
<tr>
<td>A1L-A.5</td>
<td>Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing</td>
<td>Emre Salman, Stony Brook University, Mohammad H. Asgari, Stony Brook University, Milutin Stanačević, Stony Brook University</td>
</tr>
<tr>
<td>A1L-A.6</td>
<td>Implementation of Functional Components of the Locomotion Processing Unit</td>
<td>Kevin A. Mazurek, Johns Hopkins University, Ralph Etienne-Cummings, Johns Hopkins University</td>
</tr>
</tbody>
</table>
A2P-B Circuits for Biomedical Systems II

Chair(s): Pedram Mohseni, Case Western Reserve University
Guoxing Wang, Shanghai Jiao Tong University

A2P-B.1 A Hardware Implementation of Real-Time Epileptic Seizure Detector on FPGA 25
Tsan-Jieh Chen, National Chiao Tung University
Chi Jeng, National Chiao Tung University
Shun-Ting Chang, National Chiao Tung University
Herming Chiueh, National Chiao Tung University
Sheng-Fu Liang, National Cheng Kung University
Yu-Cheng Hsu, National Cheng Kung University
Tzu-Chieh Chien, National Cheng Kung University

A2P-B.2 A Sub-1μW Neural Spike-Peak Detection and Spike-Count Rate Encoding Circuit 29
Sivylla E. Paraskevopoulou, Imperial College London
Timothy G. Constandinou, Imperial College London

A2P-B.3 A Nano Power CMOS Tinnitus Detector for a Fully Implantable Closed-Loop Neurodevice 33
Senad Hiseni, Delft University of Technology
Chutham Sawigun, Delft University of Technology
Sven Vanneste, University Hospital Antwerp
Eddy van der Velden, University Hospital Antwerp
Dirk De Ridder, University Hospital Antwerp
Wouter A. Serdijn, Delft University of Technology

A2P-B.4 ElectroCorticoGraphy (ECoG) Acquisition Exploiting Signal Characteristics for Reduced Power .. 37
Apurva Mishra, University of Washington
Fan Zhang, University of Washington
Brian P. Otis, University of Washington

A2P-B.5 Real-Time Multi-Channel Seizure Detection and Analysis Hardware 41
Darin Chandler Jr., University of Maryland, Baltimore County
Jordan Bisasky, University of Maryland, Baltimore County
Jerome L.V.M. Stanislaus, University of Maryland, Baltimore County
Tinoosh Mohsenin, University of Maryland, Baltimore County

A2P-B.6 Efficient Speech Edge Detection for Mobile Health Applications 45
Dingkun Du, Dartmouth College
Kofi Odame, Dartmouth College

A2P-C Circuits for Biomedical Systems III

Chair(s): Pedram Mohseni, Case Western Reserve University
Guoxing Wang, Shanghai Jiao Tong University

A2P-C.1 FPGA Implementation of an IIR Temporal Filtering Technique for Real-Time Stimulus Artifact Rejection .. 49
Kanokwan Limnuson, Case Western Reserve University
Hui Lu, Case Western Reserve University
Hillel J. Chiel, Case Western Reserve University
Pedram Mohseni, Case Western Reserve University
A2P-C.2 Wide Bandwidth Cell Impedance Spectroscopy based on Digital Auto Balancing Bridge Method ... 53
Nan Li, National University of Defense Technology / University of Sussex
Hui Xu, National University of Defense Technology
Zhou Zhou, National University of Defense Technology
Zhaolin Sun, National University of Defense Technology
Xin Xu, National University of Defense Technology
Wei Wang, University of Sussex

A2P-C.3 A 12V-500μA Neuron Stimulator with Current Calibration Mechanism in 0.18μm Standard CMOS Process ... 57
Chien-Chih Chen, National Tsing Hua University
Kea-Tiong Tang, National Tsing Hua University

A2P-C.4 An Automated Calibration System for In Vivo Neural Network Study ... 61
Thoa Nguyen, IMEC
Carmen Bartic, Katholieke Universiteit Leuven
Wolfgang Eberle, IMEC
Georges Gielen, Katholieke Universiteit Leuven

A2P-C.5 An Analog Beamformer for Integrated High-Frequency Medical Ultrasound Imaging 65
Gokce Gurun, Georgia Institute of Technology
Jaime Zahorian, Georgia Institute of Technology
Coskun Tekes, Georgia Institute of Technology
Mustafa Karaman, Isik University
Paul Hasler, Georgia Institute of Technology
F. Levent Degertekin, Georgia Institute of Technology

A2P-C.6 Modeling Intrinsic Ion-Channel and Synaptic Variability in a Cortical Neuromorphic Circuit ... 69
Mohammad Mahvash, University of Southern California
Alice C. Parker, University of Southern California

A2P-D Circuits for Biomedical Systems IV
Chair(s): Guoxing Wang, Shanghai Jiao Tong University
Pedram Mohseni, Case Western Reserve University

A2P-D.1 Comprehensive Analysis and Optimization of CMOS Neural Amplifiers for Wireless Recording Implants ... 73
Haitao Li, Michigan State University
Andrew J. Mason, Michigan State University

A2P-D.2 A Low-Power, Low-Voltage, User-Programmable, Wireless Interface for Reliable Neural Recording ... 77
Amir Borna, University of Michigan, Ann Arbor
Khalil Najafi, University of Michigan, Ann Arbor

A2P-D.3 A 16×16 Multi-Electrode Array with Integrated CMOS Amplifiers for Neural Signal Recording ... 82
Lu Wang, Boston University
David S. Freedman, Boston University
Ronald W. Knepper, Boston University
M. Selim Ünlü, Boston University
Mesut Sahin, New Jersey Institute of Technology
A2P-D.4 An Analog-to-Time Converter with Positive Feedback for Amplifying Miniature Neural recordings
Hsin-Chi Chang, National Tsing Hua University
Yi-Da Wu, National Tsing Hua University
Hsin Chen, National Tsing Hua University

A2P-E Medical Information and Telecare Systems I
Chair(s): Guoxing Wang, Shanghai Jiao Tong University
Pedram Mohseni, Case Western Reserve University

A2P-E.1 Development of Tele-Echography Interface with AR/VR Visualization System of Internal Organs
Takashi Yoshinaga, Institute of Systems, Information Technologies and Nanotechnologies
Daisaku Arita, Institute of Systems, Information Technologies and Nanotechnologies
Wataru Miyazaki, Tokyo University of Agriculture and Technology
Kohji Masuda, Tokyo University of Agriculture and Technology

A2P-E.2 A VHDL Implementation of the Biostator II Glucose Control Algorithm for Critical Care
Ilias Pagkalos, Imperial College London
Pau Herrero, Imperial College London
Mohamed El-Sharkawy, Imperial College London
Peter Pesl, Imperial College London
Nick Oliver, Imperial College London
Pantelis Georgiou, Imperial College London

A2P-E.3 Simultaneous Neural and Movement Recording in Large-Scale Immersive Virtual Environments
Joseph Snider, University of California, San Diego
Markus Plank, University of California, San Diego
Dongpyo Lee, University of California, San Diego
Howard Poizner, University of California, San Diego

A3L-A Systems Enabling Experimental Neuroscience in Freely-Moving Animals
Chair(s): Mohsen Mollazadeh, Johns Hopkins University
Kartikeya Murari, Johns Hopkins University

A3L-A.1 Instrumentation Enabling the Chronic Assessment of Neural Activity: A Novel Case Study of Hibernation in Ursus Americanus
T.G. Laske, Medtronic, Inc.
D.L. Garshelis, Minnesota State Government
P.A. Iaizzo, University of Minnesota
D. Carlson, Medtronic, Inc.
R. Jensen, Medtronic, Inc.
S. Stanslaski, Medtronic, Inc.
S. Weiss, Medtronic, Inc.
P. Afshar, Medtronic, Inc.
P. Cong, Medtronic, Inc.
T. Denison, Medtronic, Inc.
A3L-A.2 A Wideband RF Link at the 5.8 GHz ISM Band for Multi-Channel Neural Telemetry
for Small Animals ... 106
Sabyasachi Roy, Johns Hopkins University
Xiaoqin Wang, Johns Hopkins University
Andy Olson, Montana State University
Ross K. Snider, Montana State University

A3L-A.3 Functional Neuroimaging by Using an Implantable CMOS Multimodal Device in a Freely-Moving Mouse .. 110
Takuma Kobayashi, Nara Institute Science and Technology
Hideki Tamura, Nara Institute Science and Technology
Yumiko Hatanaka, National Institute for Physiological Sciences
Mayumi Motoyama, Nara Institute Science and Technology
Toshihiko Noda, Nara Institute Science and Technology
Kiyotaka Sasagawa, Nara Institute Science and Technology
Takashi Tokuda, Nara Institute Science and Technology
Yasuyuki Ishikawa, Nara Institute Science and Technology
Sadao Shiosaka, Nara Institute Science and Technology
Jun Ohta, Nara Institute Science and Technology

A3L-A.4 A Head-Mountable Microscope for High-Speed Fluorescence Brain Imaging 114
Ahmad Osman, John B. Pierce Laboratory
Joon Hyuk Park, Yale University
David Dickensheets, Montana State University
Jelena Platisa, John B. Pierce Laboratory
Eugenio Culurciello, Yale University
Vincent A. Pieribone, John B. Pierce Laboratory

A3L-A.5 Design of a Novel Head-Mountable Microscope System for Laser Speckle Imaging 117
J. Senarathna, Johns Hopkins University
K. Murari, Johns Hopkins University
R. Etienne-Cummings, Johns Hopkins University
N.V. Thakor, Johns Hopkins University

A3L-A.6 Towards a Smart Experimental Arena for Long-Term Electrophysiology Experiments 121
Uei-Ming Jow, Georgia Institute of Technology
Mehdi Kiani, Georgia Institute of Technology
Xueliang Huo, Georgia Institute of Technology
Maysam Ghovanloo, Georgia Institute of Technology

A4L-A Compressive Sensing for Biosignals: From Algorithms to Circuits and Systems Design
Chair(s): Gianluca Setti, Università ‘di Ferrara
Wen Li, Michigan State University

A4L-A.1 Structured Sparsity Models for Compressively Sensed Electrocardiogram Signals: A Comparative Study .. 125
Hossein Mamaghanian, École Polytechnique Fédérale de Lausanne
Nadia Khaled, École Polytechnique Fédérale de Lausanne
David Atienza, École Polytechnique Fédérale de Lausanne
Pierre Vandergheynst, École Polytechnique Fédérale de Lausanne
A4L-A.2 System Considerations for the Compressive Sampling of EEG and ECoG Bio-Signals
Daibashish Gangopadhyay, University of Washington
Emily G. Allstot, University of Washington
Anna M.R. Dixon, University of Washington
David J. Allstot, University of Washington

A4L-A.3 Efficient Realization of Random Demodulator-Based Analog to Information Converters
Yehia Massoud, University of Alabama at Birmingham
Sami Smaili, University of Alabama at Birmingham
Vikas Singal, University of Alabama at Birmingham

A4L-A.4 An Architecture for 1-Bit Localized Compressive Sensing with Applications to EEG
Javier Haboba, University of Bologna
Mauro Mangia, University of Bologna
Riccardo Rovatti, University of Bologna
Gianluca Setti, University of Ferrara

A4L-A.5 A Scalable Implementation of Sparse Approximation on a Field Programmable Analog Array
Samuel Shapero, Georgia Institute of Technology
Crisopher Rozell, Georgia Institute of Technology
Aurèle Balavoine, Georgia Institute of Technology
Paul Hasler, Georgia Institute of Technology

A4L-A.6 On-Chip Spike Clustering and Classification Using Self Organizing Map for Neural Recording Implants
Yuning Yang, Michigan State University
Andrew J. Mason, Michigan State University

A5P-B Wireless, Wearable, and Implantable/Injectable Technology I
Chair(s): Maysam Ghovanloo, Georgia Institute of Technology
Yong Lian, National University of Singapore

A5P-B.1 A Sub-GHz UWB Pulse Generator for Wireless Implantable Medical Devices
M. Stoopman, Delft University of Technology
W.A. Serdijn, Delft University of Technology

A5P-B.2 A MedRadio-Band Low-Energy-Per-Bit CMOS OOK Transceiver for Implantable Medical Devices
Li-Chen Liu, National Chiao Tung University
Ming-Han Ho, National Chiao Tung University
Chung-Yu Wu, National Chiao Tung University

A5P-B.3 A Low-Power CMOS BFSK Transceiver for Health Monitoring Systems
Sungho Kim, Arizona State University
William Lepkowski, Arizona State University
Seth J. Wilk, Arizona State University
Trevor J. Thornton, Arizona State University
Bertan Bakkaloglu, Arizona State University
A5P-B.4 PPM Coding Schemes for Super-Regenerative Receivers for Autonomous Wireless BANs ... 161
Peng Zhang, Eindhoven University of Technology
Li Huang, IMEC-NL
Frans M.J. Willems, Eindhoven University of Technology

A5P-B.5 Integrated CMOS Wireless Power Transfer for Neural Implants ... 165
Meysam Zargham, University of Toronto
P. Glenn Gulak, University of Toronto

A5P-B.6 A Low-Cost COTS UWB Transceiver for Biological Applications Achieves 50 Mb/s with < 10-6 Raw BER ... 169
Kerron R. Duncan, Johns Hopkins University
Ralph Etienne-Cummings, Johns Hopkins University

A5P-B.7 An Ultra Low Power Digital Receiver Architecture for Biomedical Applications ... 173
F. Goodarzy, University of Melbourne
L. Koushaeian, University of Melbourne
B. Ghafari, University of Melbourne
E. Skafidas, University of Melbourne

A5P-B.8 An Area and Power Efficient 1-UWB Transmitter for Biomedical Applications Implemented in 65 nm CMOS Technology ... 177
Ondrej Novak, University of Utah
Cameron Charles, University of Utah
Richard B. Brown, University of Utah

A5P-C Circuits for Biomedical Systems V
Chair(s): Maysam Ghovanloo, Georgia Institute of Technology
Yong Lian, National University of Singapore

A5P-C.1 Modeling of a Capacitive Link for Data Telemetry to Biomedical Implants ... 181
Mohammad Takhti, K.N. Toosi University of Technology
Farzad Asgarian, K.N. Toosi University of Technology
Amir M. Sodagar, K.N. Toosi University of Technology

A5P-C.2 Transmitters for Body Sensor Networks: A Comparative Study ... 185
Karthik Natarajan, University of Washington
David J. Allstot, University of Washington
Jeffrey S. Walling, Rutgers University

A5P-C.3 A Subthreshold Down Converter Optimized for Super-Low-Power Applications in MICS Band ... 189
J. Yang, National ICT Australia/The University of Melbourne
N. Tran, National ICT Australia/The University of Melbourne
S. Bai, National ICT Australia/The University of Melbourne
M. Fu, National ICT Australia/The University of Melbourne
E. Skafidas, National ICT Australia/The University of Melbourne
M. Halpern, National ICT Australia/The University of Melbourne
D.C. Ng, National ICT Australia/The University of Melbourne
I. Mareels, University of Melbourne
A5P-C.4 A Wireless Powered Implantable Bio-Sensor Tag System-on-Chip for Continuous Glucose Monitoring
Shuo Guan, Fudan University
Jingren Gu, Fudan University
Zhonghan Shen, Fudan University
Junyu Wang, Fudan University
Yue Huang, Michigan State University
Andrew Mason, Michigan State University

A5P-C.5 Development of a Telemetry Unit for Bone Strain Monitoring
Fahad Moiz, University of Missouri-Kansas City
Walter Leon-Salas, University of Missouri-Kansas City
Mark Johnson, University of Missouri-Kansas City

A5P-D Wireless, Wearable, and Implantable/Injectable Technology II
Chair(s): Yong Lian, National University of Singapore
Maysam Ghovanloo, Georgia Institute of Technology

A5P-D.1 Freezing of Gait Detection in Parkinson’s Disease Using Accelerometer based Smart Clothes
K. Niazmand, Technische Universitaet Muenchen
K. Tonn, Technische Universitaet Muenchen
Y. Zhao, Technische Universitaet Muenchen
U.M. Fietzek, Schon Klinik München Schwabing
F. Schrotelet, Schon Klinik München Schwabing
K. Ziegler, Schon Klinik München Schwabing
A.O. Ceballos-Baumann, Schon Klinik München Schwabing
T.C. Lueth, Technische Universitaet Muenchen

A5P-D.2 A Wireless ECG Plaster for Real-Time Cardiac Health Monitoring in Body Sensor Networks
Da Ren Zhang, National University of Singapore
Chacko John Deepu, National University of Singapore
Xiao Yuan Xu, National University of Singapore
Yong Lian, National University of Singapore

A5P-D.3 Rapid Processor Customization for Design Optimization: A Case Study of ECG R-Peak Detection
Mladen Milosevic, University of Alabama in Huntsville
Emil Jovanov, University of Alabama in Huntsville
Aleksandar Milenkovic, University of Alabama in Huntsville

A5P-E Harvesting/Scavenging Energy for Biomedical Devices I
Chair(s): Yong Lian, National University of Singapore
Maysam Ghovanloo, Georgia Institute of Technology

A5P-E.1 A Power- and Area-Efficient Integrated Power Management System for Inductively-Powered Biomedical Implants
Xiwen Zhang, University of Texas at Dallas
Hoi Lee, University of Texas at Dallas
Song Guo, University of Texas at Dallas
A5P-E.2 Dual-Input Dual-Output Energy Harvesting DC-DC Boost Converter for Wireless Body Area Network
Se-Won Wang, Korea Advanced Institute of Science and Technology
Jong-Pil Im, Korea Advanced Institute of Science and Technology
Gyu-Hyeong Cho, Korea Advanced Institute of Science and Technology

A5P-E.3 An Efficient Wireless Power Transmission System for the Capsule Endoscopy Application
Yu Mao, Peking University / SHRIME
Liang Feng, Peking University / SHRIME
Yuhua Cheng, Peking University / SHRIME

A6L-A Wireless, Wearable, and Implantable/Injectable Technology III
Chair(s): Wouter Serdijn, TU Delft
Ralph Etienne-Cummings, Johns Hopkins University

A6L-A.1 Optimized R Peak Detection Algorithm for Ultra Low Power ECG Systems
Sachin Shrestha, IMEC
Tom Torfs, IMEC
Hyejung Kim, IMEC
Refet Firat Yazicioglu, IMEC
Inaki Romero, IMEC-NL
Dilpreet Buxi, IMEC-NL
Torfinn Berset, IMEC-NL
Marco Altini, IMEC-NL

A6L-A.2 A Battery-Free Multi-Channel Digital Neural/EMG Telemetry System for Flying Insects
Stewart J. Thomas, Duke University
Reid R. Harrison, Intan Technologies LLC
Anthony Leonardo, Howard Hughes Medical Institute
Matthew S. Reynolds, Duke University

A6L-A.3 Portable Hardware for Real-Time Channel Estimation on Wireless Body Area Networks
Seunghyun Oh, University of Michigan
David D. Wentzloff, University of Michigan

A6L-A.4 Wireless Micro-ECoG Recording in Primates During Reach-to-Grasp Movements
Mohsen Mollazadeh, Johns Hopkins University
Elliot Greenwald, Johns Hopkins University
Nitish Thakor, Johns Hopkins University
Marc Schieber, University of Rochester Medical Center
Gert Cauwenberghs, University of California, San Diego

A6L-A.5 New Subdural Electrode Contacts for Intracerebral Electroencephalographic Recordings: Comparative Studies on Neural Signal Recording In Vivo
Muhammad T. Salam, Polystim Neurotechnologies Laboratory / Ecole Polytechnique de Montreal
Sébastien Desgent, Sainte-Justine University Hospital Center
Sandra Duss, Sainte-Justine University Hospital Center
Lionel Carmant, Sainte-Justine University Hospital Center
Dang K. Nguyen, Notre-Dame Hospital
Mohamad Sawan, Polystim Neurotechnologies Laboratory / Ecole Polytechnique de Montreal
A6L-A.6 Achieving Electric Field Steering in Deep Brain Stimulation

Kenneth Tong, University College London
Virgilio Valente, University College London
Andreas Demosthenous, University College London
Richard Bayford, Middlesex University

Saturday, November 11, 2011

B1L-A Bio-Inspired and Biomolecular Circuits and Systems I

Chair(s): Philipp Häfliger, University of Oslo
Pantelis Georgiou, Imperial College London

B1L-A.1 Dynamical Systems: A Tool for Analysis and Design of Silicon Half Center Oscillators

Fei Li, Nanyang Technological University
Arindam Basu, Nanyang Technological University
Chip-Hong Chang, Nanyang Technological University
Avis H. Cohen, University of Maryland

Juan A. Leñero-Bardallo, University of Oslo
D.H. Bryn, University of Oslo
P. Häfliger, University of Oslo

B1L-A.3 Analysis and Reduction of Mismatch in Silicon Neurons

Shuo Sun, Nanyang Technological University
Arindam Basu, Nanyang Technological University

B1L-A.4 A CMOS Pancreatic Islet of Langerhans for Automatic Glycemic Regulation

Dylan Banks, Imperial College London
Christina Morris, Imperial College London
Joan Omeru, Imperial College London
Wang Wei, Imperial College London
Pantelis Georgiou, Imperial College London
Christofer Toumazou, Imperial College London

B1L-A.5 CMOS Low Current Measurement System for Nanopore Sensing Applications

Brian Goldstein, Yale University
Dongsoo Kim, Yale University
Malgorzata Magoch, Instituto de Tecnologia Quimica e Biológica
Yann Astier, Instituto de Tecnologia Quimica e Biológica
Eugenio Culurciello, Purdue University

B1L-A.6 Speaker-Independent Isolated Digit Recognition Using an AER Silicon Cochlea

Mohammad Abdollahi, ETH Zurich and University of Zurich / Institute of Neuroinformatics
Shih-Chii Liu, ETH Zurich and University of Zurich / Institute of Neuroinformatics
B2P-B Bio-Inspired and Biomolecular Circuits and Systems II

Chair(s): George Yuan, Hong Kong University of Science and Technology
Themistoklis Prodromakis, Imperial College London

B2P-B.1 A Silicon Pancreatic Beta Cell based on the Phantom Bursting Model .. 273
Harkanwal Deep, Imperial College London
Pantelis Georgiou, Imperial College London
Christofer Toumazou, Imperial College London

B2P-B.2 A VLSI Network of Spiking Neurons with an Asynchronous Static Random Access Memory ... 277
Saber Moradi, University of Zurich and ETH Zurich
Giacomo Indiveri, University of Zurich and ETH Zurich

B2P-B.3 HMM Classifier Using Biophysically based CMOS Dendrites for Wordspotting 281
Suma George, Georgia Institute of Technology
Paul Hasler, Georgia Institute of Technology

B2P-B.4 A 60-90 MHz Cochlear-Based Channelizer .. 285
Alex Grichener, Agilent Technologies Inc.
Yu-Chin Ou, Qualcomm Inc.
Gabriel M. Rebeiz, University of California, San Diego

Dingkun Du, Dartmouth College
Kofi Odame, Dartmouth College

B2P-C Integrated Biomedical Systems, BioMEMS, Bio-Sensors/Actuators and Lab-on-Chip I

Chair(s): George Yuan, Hong Kong University of Science and Technology
Themistoklis Prodromakis, Imperial College London

B2P-C.2 A Wearable Electronic Nose SoC for Healthier Living ... 293
Kea-Tiong Tang, National Tsing Hua University
Shih-Wen Chiu, National Tsing Hua University
Meng-Fan Chang, National Tsing Hua University
Chih-Cheng Hsieh, National Tsing Hua University
Jyuo-Min Shyu, National Tsing Hua University

B2P-C.3 On-Chip Biochemical Sample Preparation Using Digital Microfluidics 297
Yi-Ling Hsieh, National Cheng Kung University
Tsung-Yi Ho, National Cheng Kung University
Krishnendu Chakrabarty, Duke University

B2P-C.4 An Integrated LOC Hydrodynamic Focuser with a CNN-Based Camera System for Cell Counting Application ... 301
András Laki, Politecnico di Torino
Ismael Rattalino, Politecnico di Torino
Fernando Corinto, Politecnico di Torino
Kristóf Iván, Pézmán Peter Catholic University
Danilo Demarchi, Politecnico di Torino
Pierluigi Civera, Politecnico di Torino
B2P-C.5 Biosensor Array Microsystem on a CMOS Amperometric Readout Chip
X. Liu, Michigan State University
L. Li, Michigan State University
B. Awate, Michigan State University
R.M. Worden, Michigan State University
G. Reguera, Michigan State University
A.J. Mason, Michigan State University

B2P-C.6 A High Sensitive SPR Biosensor System Utilizing Gold Nanorods
Santosh Koppa, University of Texas at San Antonio
Youngjoong Joo, University of Texas at San Antonio

B2P-D Integrated Biomedical Systems, BioMEMS,
Bio-Sensors/Actuators and Lab-on-Chip II
Chair(s): Themistoklis Prodromakis, Imperial College London
George Yuan, Hong Kong University of Science and Technology

B2P-D.1 A 10-Bit Resolution Wide Dynamic Range Detector for Cell Recording with
Microelectrode Arrays
Jing Guo, Hong Kong University of Science & Technology
Jiageng Huang, Hong Kong University of Science & Technology
Jie Yuan, Hong Kong University of Science & Technology

B2P-D.2 Fully Integrated CMOS Avalanche Photodiode and
Distributed-Gain TIA for CW-fNIRS
Ehsan Kamrani, Polystim Neurotechnologies Laboratory / Ecole Polytechnique de Montreal
Mohamad Sawan, Polystim Neurotechnologies Laboratory / Ecole Polytechnique de Montreal

B2P-D.3 VHDL-AMS Model of an Electrochemical Cell to Design VLSI Bio-Chips
Marialaura Beltrandi, École Polytechnique Fédérale de Lausanne
Alain Vachoux, École Polytechnique Fédérale de Lausanne
Sandro Carrara, École Polytechnique Fédérale de Lausanne
Yusuf Leblebici, École Polytechnique Fédérale de Lausanne
Giovanni De Micheli, École Polytechnique Fédérale de Lausanne

B2P-D.4 A 15µW 16 Channel Exg Processor with Data Transition Memory-Quad
Level Vector for Wearable Healthcare Platform
Taehwan Roh, Korea Advanced Institute of Science and Technology
Seulki Lee, Korea Advanced Institute of Science and Technology
Hoi-Jun Yoo, Korea Advanced Institute of Science and Technology

B2P-D.5 Individually Addressable Optoelectronic Arrays for Optogenetic Neural Stimulation
Brian McGovern, Imperial College London
Emmanuel Drakakis, Imperial College London
Mark Neil, Imperial College London
Peter O’Brian, Tyn dall Institute
Brian Corbett, Tyn dall Institute
Rolando Berlinguer-Palmini, Newcastle University
Patrick Degenaar, Newcastle University
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3L-A</td>
<td>Cells, Circuits and Computation</td>
<td>Rahul Sarpeshkar, MIT, George Yuan</td>
</tr>
<tr>
<td></td>
<td>Analog Transistor Models of Bacterial Genetic Circuits</td>
<td>Ramiz Daniel, Massachusetts Institute of Technology, Sung Sik Woo, Massachusetts Institute of Technology, Lorenzo Turicchia, Massachusetts Institute of Technology, Rahul Sarpeshkar, Massachusetts Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Reprogrammable Biological Logic Gate that Exploits Noise</td>
<td>Anna Dari, Arizona State University, Adi R. Bulsara, SPAWAR Systems Center Pacific, William L. Ditto, Arizona State University, Xiao Wang, Arizona State University</td>
</tr>
<tr>
<td></td>
<td>Engineering Insulation from Retroactivity of the Frequency Response of Covalent Modification Cycles</td>
<td>Domitilla Del Vecchio, Massachusetts Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Analysis and Design of a Synthetic Transcriptional Network for Exact Adaptation</td>
<td>Jongmin Kim, California Institute of Technology, Richard M. Murray, California Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Designing Extensible Protein-DNA Interactions for Synthetic Biology</td>
<td>Kristjan E. Kaseniit, Massachusetts Institute of Technology, Samuel D. Perli, Massachusetts Institute of Technology, Timothy K. Lu, Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>B4L-A</td>
<td>Integrated Biomedical Systems, BioMEMS, Bio-Sensors/Actuators and Lab-on-Chip III</td>
<td>Andrew Mason, Michigan State University, Jennifer Blain Christen, Arizona State University</td>
</tr>
<tr>
<td></td>
<td>Feasibility of an Electro-Optic Link for Bondpad-Less CMOS Lab-on-Chips</td>
<td>Alexandru Serb, Imperial College London, Konstantin Nikolic, Imperial College London, Timothy G. Constantinou, Imperial College London</td>
</tr>
<tr>
<td></td>
<td>CMOS Impedance Spectrum Analyzer with Dual-Slope Multiplying ADC</td>
<td>Hamed Mazhab Jafari, University of Toronto, Roman Genov, University of Toronto</td>
</tr>
<tr>
<td></td>
<td>An ISFET based Chemical Gilbert Cell</td>
<td>Melpomeni Kalofonou, Imperial College London, Pantelis Georgiou, Imperial College London, Christofer Toumazou, Imperial College London</td>
</tr>
</tbody>
</table>
B4L-A.5 A Novel Design Approach for Developing Chemical Sensing Platforms Using Inexpensive Technologies ... 369
T. Prodromakis, Imperial College London
Y. Liu, Imperial College London
J. Yang, Imperial College London
D. Hollinghurst, Imperial College London
C. Toumazou, Imperial College London

B4L-A.6 An AC Electrokinetic Device for the Rapid Separation and Detection of Cancer Related DNA Nanoparticulate Biomarkers ... 373
Rajaram Krishnan, Biological Dynamics, Inc.
David Charlot, Biological Dynamics, Inc.
Lucas Kumosa, Biological Dynamics, Inc.
William Hanna, Biological Dynamics, Inc.
Jerry Lu, Biological Dynamics, Inc.
Avery Sonnenberg, University of California, San Diego
Michael Heller, University of California, San Diego

B5P-B Circuits for Biomedical Systems VI
Chair(s): Julio Georgiou, University of Cyprus
Tor Sverre Lande, University of Oslo

B5P-B.1 Sensor Interface with Single-Line Quasi-Digital Output for Ligament Balance Measuring System ... 377
Xu Zhang, Tsinghua University
Hong Chen, Tsinghua University
Ming Liu, Tsinghua University
Chun Zhang, Tsinghua University
Zhihua Wang, Tsinghua University

B5P-B.2 A 0.5V Signal-Specific Continuous-Time Level-Crossing ADC with Charge Sharing 381
Yongjia Li, Delft University of Technology
Duan Zhao, Delft University of Technology
Marijn N. van Dongen, Delft University of Technology
Wouter A. Serdijn, Delft University of Technology

B5P-B.3 An 8-Channel Readout Front-End for Long-Term Sleep Quality Monitoring 385
Xiaofei Pu, Fudan University
Hui Zhang, Fudan University
Yajie Qin, Fudan University
Zhiliang Hong, Fudan University

B5P-B.4 A CMOS Circuit for Precise Reading of Matrix Addressed Magnetoresistive Biosensors 389
Tiago Costa, Instituto Superior Técnico
Moisés S. Piedade, Instituto Superior Técnico
Jorge R. Fernandes, Instituto Superior Técnico

B5P-B.5 A High-Sensitivity Power-Efficient Limiting Amplifier for Bioimpedance Phase Angle Detectors ... 393
José L. Ausín, University of Extremadura
J. Ramos, University of Extremadura
J.F. Duque-Carrillo, University of Extremadura
Guido Torelli, University of Pavia
B5P-B.6 A CMUT Read-Out Circuit with Improved Receive Sensitivity Using an Adaptive Biasing Technique 397
Parisa Behnamfar, University of British Columbia
Shahriar Mirabbasi, University of British Columbia

B5P-B.7 A Low Voltage, Energy Efficient Supply Boosted SAR ADC for Biomedical Applications 401
Ali Mesgarani, University of Idaho
Suat U. Ay, University of Idaho

B5P-B.8 ESD Protection and Biomedical Integrated Circuit Co-Design Techniques 405
Jian Liu, University of California, Riverside
Xin Wang, Fairchild Semiconductor, Inc.
Hui Zhao, University of California, Riverside
Qiang Fang, University of California, Riverside
Zitao Shi, University of California, Riverside
Li Wang, University of California, Riverside
Chen Zhang, University of California, Riverside
Albert Wang, University of California, Riverside
Yuhua Cheng, Peking University / SHRIME
Bin Zhao, Fairchild Semiconductor, Inc.
Gary Zhang, Skyworks

B5P-C Biometrics, Biomedical Signal Processing and Bioimaging Technology I
Chair(s): Julio Georgiou, University of Cyprus
Tor Sverre Lande, University of Oslo

B5P-C.1 A Predictor for Ventricular Tachycardia based on Heart Rate Variability Analysis 409
Segyeong Joo, University of Ulsan College of Medicine / Asan Medical Center
Soo-Jin Huh, University of Ulsan College of Medicine / Asan Medical Center
Kee-Joon Choi, University of Ulsan College of Medicine / Asan Medical Center

B5P-C.2 DWT and RT-Based Approach for Feature Extraction and Classification of Mammograms with SVM .. 412
Salim Lahmiri, University of Quebec at Montreal
Mounir Boukadoum, University of Quebec at Montreal

B5P-C.4 Cross-Recurrence Rate for Discriminating ‘Conscious’ and ‘Unconscious’ State in Propofol General Anesthesia 416
Nicoletta Nicolaou, University of Cyprus
Julius Georgiou, University of Cyprus
Saverios Hourris, Nicosia General Hospital
Pandelitsa Alexandrou, Nicosia General Hospital

B5P-C.5 On-Line Empirical Mode Decomposition Biomedical Microprocessor for Hilbert Huang Transform .. 420
Nai-Fu Chang, National Taiwan University
Tung-Chien Chen, National Taiwan University
Cheng-Yi Chiang, National Taiwan University
Liang-Gee Chen, National Taiwan University

B5P-C.6 Rakeness-Based Approach to Compressed Sensing of ECGs .. 424
Mauro Mangia, University of Bologna
Javier Haboba, University of Bologna
Riccardo Rovatti, University of Bologna
Gianluca Setti, University of Ferrara
B5P-D Biometrics, Biomedical Signal Processing and Bioimaging Technology II

Chair(s): Tor Sverre Lande, University of Oslo
Julio Georgiou, University of Cyprus

B5P-D.1 Tracking and Control for Handheld Surgery Tools ... 428
Gontje C. Claasen, Mines ParisTech
Philippe Martin, Mines ParisTech
Frederic Picard, Golden Jubilee National Hospital

B5P-D.2 Scene Optimization for Optogenetic Retinal Prosthesis 432
Walid Al-Atabany, Newcastle University
Patrick Degenaar, Newcastle University

B5P-D.3 Detection of Upper Limb Activities Using Multimode Sensor Fusion 436
Yan Wang, University of California, Los Angeles
Xiaoyu Xu, University of California, Los Angeles
Maxim Batalin, University of California, Los Angeles
William Kaiser, University of California, Los Angeles

B5P-D.4 Custom Annular Photodetector Arrays for Breast Cancer Margin Assessment Using Diffuse Reflectance Spectroscopy ... 440
Sulochana Dhar, Duke University
Justin Y. Lo, Duke University
Bing Yu, Duke University
Martin A. Brooke, Duke University
Nimmi Ramanujam, Duke University
Nan M. Jokerst, Duke University

B6L-A Biomedical Signal Processing III and Circuits for Biomedical Systems VII

Chair(s): Sandro Carrara, EPFL
Gert Cauwenberghs, UC San Diego

B6L-A.1 Gait-Based Person and Gender Recognition Using Micro-Doppler Signatures 444
Guillaume Garreau, University of Cyprus
Charalambos M. Andreou, University of Cyprus
Andreas G. Andreou, University of Cyprus
Julius Georgiou, University of Cyprus
Salvador Dura-Bernal, University of Plymouth
Thomas Wennekers, University of Plymouth
Sue Denham, University of Plymouth

B6L-A.2 Automatic Stage Scoring of Single-Channel Sleep EEG based on Multiscale Permutation Entropy ... 448
Chih-En Kuo, National Cheng Kung University
Sheng-Fu Liang, National Cheng Kung University

B6L-A.3 Chest Movement Estimation from Radar Modulation Caused by Heartbeats 452
Øyvind Aardal, Forsvarets forskningsinstitutt
Svein-Erik Hamran, Forsvarets forskningsinstitutt
Tor Berger, Forsvarets forskningsinstitutt
Yoann Paichard, Forsvarets forskningsinstitutt
Tor Sverre Lande, University of Oslo
Yu M. Chi, University of California, San Diego
Christoph Maier, University of California, San Diego
Gert Cauwenberghs, University of California, San Diego

B6L-A.5 Circuit Design for Human Metabolites Biochip .. 460
S. Sara Ghoreishizadeh, École Polytechnique Fédérale de Lausanne
Sandro Carrara, École Polytechnique Fédérale de Lausanne
Giovanni De Micheli, École Polytechnique Fédérale de Lausanne

B6L-A.6 A Self-Calibration Circuit for a Neural Spike Recording Channel 464
Alberto Rodriguez-Pérez, IMSE-CNM and University of Seville
Jesús Ruiz-Amaya, IMSE-CNM and University of Seville
Manuel Delgado-Restituto, IMSE-CNM and University of Seville
Mohamad Sawan, Polystim Neurotechnologies Laboratory / Ecole Polytechnique de Montreal
Ángel Rodríguez-Vázquez, IMSE-CNM and University of Seville