Contents

Series Preface ... xiii
Preface .. xv
About the Author .. xvii

1. Introduction to Wheel–Soil Systems 1
 1.1 Ground Vehicles and Their Running Gears 1
 1.1.1 Agricultural Vehicles .. 2
 1.1.2 Military Vehicles ... 4
 1.1.3 Engineering Vehicles and Heavy Construction
 Equipment ... 8
 1.1.4 Sport and Leisure Vehicles 9
 1.1.5 Planetary Rovers .. 10
 1.1.6 Bush Planes ... 13
 1.2 Major Research Problems .. 14
 1.2.1 Off-Road Traction ... 14
 1.2.2 Vehicle Impact and Soil Compaction 19
References ... 23

2. Measurement of Soil Stress and Deformation 27
 2.1 Soil Stress Measurements: Introduction 28
 2.1.1 Significant Features of Sensors Affecting Stress
 Determination ... 29
 2.1.2 Factors Influencing Precision of Measurements 31
 2.2 Characterisation of Soil Stress Transducers 32
 2.2.1 Choosing Sensor Type, Membrane Material, and
 Pressure Transducer ... 32
 2.2.2 Geometry of Soil Stress Sensor 34
 2.2.3 Signal Conditioning and Data Acquisition 35
 2.2.4 Calibration of Pressure Sensors 35
 2.2.5 Installation of Transducers in Soil 36
 2.3 Strain Gage Pressure Transducers for Soils 37
 2.3.1 Design Considerations for Strain Gage Pressure
 Transducers ... 37
 2.3.2 Calibration of Soil Pressure Transducers 46
 2.3.3 Results of Calibration Tests 49
 2.3.4 Summary .. 53
 2.4 Stress State Transducer (SST) 54
 2.4.1 General Theory of Operation 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Calculation of Complete Soil Stress State</td>
<td>54</td>
</tr>
<tr>
<td>2.4.3 Fabrication of SST</td>
<td>57</td>
</tr>
<tr>
<td>2.5 Soil Deformation Determination</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Review of Existing Experimental Methods</td>
<td>61</td>
</tr>
<tr>
<td>2.5.2 Optical Non-Contact Measuring System</td>
<td>62</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>64</td>
</tr>
<tr>
<td>References</td>
<td>66</td>
</tr>
<tr>
<td>3. Soil Stress and Deformation State: Investigations</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>3.2 Effect of Static Load and Soil Stress and Deformation in Loamy Luvisol</td>
<td>70</td>
</tr>
<tr>
<td>3.2.1 Experimental Set-Up and Procedures</td>
<td>70</td>
</tr>
<tr>
<td>3.2.2 Results</td>
<td>76</td>
</tr>
<tr>
<td>3.2.3 Discussion</td>
<td>82</td>
</tr>
<tr>
<td>3.2.4 Conclusions</td>
<td>84</td>
</tr>
<tr>
<td>3.3 Effects Deformation Rate on Soil Stress and Deformation State in Loess</td>
<td>84</td>
</tr>
<tr>
<td>3.3.1 Experimental Set-Up and Procedures</td>
<td>84</td>
</tr>
<tr>
<td>3.3.2 Results</td>
<td>87</td>
</tr>
<tr>
<td>3.3.3 Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>References</td>
<td>89</td>
</tr>
<tr>
<td>4. Stress State under Wheeled Vehicle Loads</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>4.2 Field Experiment Preparation</td>
<td>92</td>
</tr>
<tr>
<td>4.2.1 Stress State Determination</td>
<td>92</td>
</tr>
<tr>
<td>4.2.2 Soil Surface Deformation Determination</td>
<td>93</td>
</tr>
<tr>
<td>4.2.3 Pulling Force Determination</td>
<td>94</td>
</tr>
<tr>
<td>4.2.4 Test Vehicles, Field Procedures, and Soil Surfaces</td>
<td>97</td>
</tr>
<tr>
<td>4.2.5 Data Reduction Methods</td>
<td>99</td>
</tr>
<tr>
<td>4.3 Analysis of Principal Stresses</td>
<td>100</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>100</td>
</tr>
<tr>
<td>4.3.2 Experimental Details</td>
<td>102</td>
</tr>
<tr>
<td>4.3.3 General Analysis of Principal Stresses</td>
<td>102</td>
</tr>
<tr>
<td>4.3.4 Effect of Soil Surface</td>
<td>104</td>
</tr>
<tr>
<td>4.3.5 Effects of Wheel Function Modes: Rolling and Driving</td>
<td>104</td>
</tr>
<tr>
<td>4.3.6 Orientation of Principal Stress σ_1</td>
<td>106</td>
</tr>
<tr>
<td>4.3.7 Effect of Increasing Vehicle Speed</td>
<td>109</td>
</tr>
<tr>
<td>4.4 Effect of Vehicle Loading and Reduced Inflation Pressure</td>
<td>111</td>
</tr>
<tr>
<td>4.4.1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>4.4.2 Experimental Details</td>
<td>112</td>
</tr>
</tbody>
</table>
5.5.2 Experimental Set-Up .. 167
5.5.3 Effects on Soil Stress State ... 168
5.5.4 Relationships of Drawbar Pull Force and Soil Stresses 169
5.5.5 Discussion .. 171
5.5.6 Conclusions ... 173
5.6 Final Conclusions ... 173
References .. 173

6. Wheel–Soil Dynamics for Aircraft Tyres on Unsurfaced Airfields .. 175
6.1 Introduction .. 175
6.1.1 Airfields and Airstrips .. 175
6.1.2 Bearing Capacities of Unsurfaced Airfields 176
6.1.3 Traction and Rolling Resistance on Unsurfaced Airfields .. 177
6.1.4 Performance of Wheels on Grassy Airfields 178
6.2 Soil Stress State under Loading of Landing Aircraft ... 179
6.2.1 Analysis of Landing on Airfield 179
6.2.2 Soil Stress State and Soil Deflection under Wheels at Touchdown ... 181
6.2.3 Results ... 185
6.2.4 Discussion ... 190
6.2.5 Summary .. 192
6.3 Rolling Resistance Coefficients for Aircraft Tyres on Unsurfaced Airfields .. 192
6.3.1 Rolling Resistance of Wheel on Deformable Surface ... 192
6.3.2 Rolling Resistance Measurements: Review of Test Methods ... 194
6.3.3 Results and Discussion ... 204
6.3.4 Concluding Remarks .. 207
6.4 Effect of Grassy Surface on Take-Off Distance 207
6.4.1 Aircraft Take-Off and Landing Performance 207
6.4.2 Airfield Experiment ... 209
6.4.3 Data Reduction Methods .. 209
6.4.4 Results ... 210
6.5 Proposed Method for Airfield Surface Evaluation and Classification .. 212
6.6 Summary .. 214
References .. 215

7. Snow Stress State under Ground Vehicle Loads ... 217
7.1 Introduction ... 217
7.1.1 Basic Snow Mechanics ... 217
Contents

7.1.2 Winter Traction .. 219
7.1.3 Preparation of Ski Routes 219
7.2 Snow Stress Measurement Methods 220
 7.2.1 Use of Soil Stress Measurement Equipment 221
 7.2.2 New Measuring Devices for Outdoor Snow Stress Experiments .. 222
7.3 Determining Snow Stress under Loading of Grooming Machine ... 224
 7.3.1 Introduction .. 224
 7.3.2 Experimental Set-Up 224
 7.3.3 Results ... 228
 7.3.4 Summary .. 231
7.4 Determination of Winter Traction and Snow Stresses under Military Truck Loading .. 232
 7.4.1 Introduction .. 232
 7.4.2 Experimental Set-Up 232
 7.4.3 Results and Discussion 234
 7.4.4 Conclusion .. 237
7.5 Effects of Snow Skis on Snow Stresses and Aircraft Ground Performance ... 239
 7.5.1 Experimental Methods 239
 7.5.2 Results ... 241
7.6 Summary .. 243
References .. 244

8. Modelling of Wheel–Soil System Based on Soil Stress and Deformation State Analysis .. 247
8.1 Introduction .. 247
8.2 Modelling Off-Road Traction 249
 8.2.1 General Description of Model 249
 8.2.2 Experimental Methods 251
 8.2.3 Results ... 255
 8.2.4 Reconstruction of Model Based on Soil Stress State Data ... 255
 8.2.5 Results ... 262
8.3 Modelling Soil Stress State by System Identification (SI) ... 267
 8.3.1 Introduction .. 267
 8.3.2 Structure of Model .. 268
 8.3.3 System Identification Method 272
 8.3.4 Experiment Design ... 273
 8.3.5 Results ... 276
 8.3.6 Conclusions .. 280
8.4 Modelling Dynamic Effects of Wheel–Soil System 281
 8.4.1 Introduction .. 281