Google Earth and Virtual Visualizations in Geoscience Education and Research

edited by

Steven J. Whitmeyer
Department of Geology & Environmental Science
James Madison University
Memorial Hall, MSC 6903
Harrisonburg, Virginia 22807
USA

John E. Bailey
Scenarios Network for Alaska & Arctic Planning
University of Alaska Fairbanks
Fairbanks, Alaska 99709
USA

Declan G. De Paor
Department of Physics
Old Dominion University
Norfolk, Virginia 23529
USA

Tina Ornduff
Google Inc.
1600 Amphitheatre Pkwy
Mountain View, California 94043
USA

THE GEOLOGICAL SOCIETY OF AMERICA®

Special Paper 492
3300 Penrose Place, P.O. Box 9140 • Boulder, Colorado 80301-9140, USA
2012
Contents

Introduction: The application of Google Geo Tools to geoscience education and research vii
J.E. Bailey, S.J. Whitmeyer, and D.G. De Paor

I. Data Visualizations

1. Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes 1
G.B. Fisher, C.B. Amos, B. Bookhagen, D.W. Burbank, and V. Godard

2. Google Earth and geologic research in remote regions of the developing world: An example from the Western Desert of Egypt 23
B.J. Tewksbury, A.A.K. Dokmak, E.A. Tarabees, and A.S. Mansour

3. Lidar and Google Earth: Simplifying access to high-resolution topography data 37
C.J. Crosby

4. Enhancing usability of near-surface geophysical data in archaeological surveys via Google Earth ... 49
C.M. Williams, G.S. Baker, and B.A. Ault

5. Workshops, community outreach, and KML for visualization of marine resources in the Grenadine Islands .. 63
M.E. Stewart and K. Baldwin

6. Geoscience applications of client/server scripts, Google Fusion Tables, and dynamic KML 77
D.G. De Paor, S.J. Whitmeyer, M. Marks, and J.E. Bailey

7. Designing interactive screen overlays to enhance effectiveness of Google Earth geoscience resources .. 105
M.M. Dordevic

8. Geomorphological analysis of coastal depositional systems in SE Brazil aided by Google Earth coupled with the integration of chronological and sedimentological data by means of a Google Fusion Table .. 113

9. Visualization of spatial and temporal trends in Louisiana water usage using Google Fusion Tables .. 127
J.A. Nunn and L. Bentley
10. Extreme dynamic mapping: Animals map themselves on the “Cloud” 139
 E. Potapov and V. Hronusov

II. Digital Geologic Mapping

 of Virginia geology .. 147
 O.P. Shufeldt, S.J. Whitmeyer, and C.M. Bailey

12. Automated export of GIS maps to Google Earth: Tool for research and teaching 165
 P.L. Guth

13. Transferring maps and data from pre-digital era theses to Google Earth: A case study from
 the Vredefort Dome, South Africa .. 183
 C. Simpson, D.G. De Paor, M.R. Beebe, and J.M. Strand

14. A test of the three-point vector method to determine strike and dip utilizing digital aerial
 imagery and topography ... 199
 L.E. Hasbargen

15. Applications of Google Earth Pro to fracture and fault studies of Laramide anticlines in
 the Rocky Mountain foreland 209
 D.R. Lageson, M.C. Larsen, H.B. Lynn, and W.A. Treadway

16. Geology from real field to 3D modeling and Google Earth virtual environments:
 Methods and goals from the Apennines (Furlo Gorge, Italy) 221
 M. De Donatis, S. Susini, and M. Foi

17. Creating Interactive 3-D block diagrams from geologic maps and cross-sections 235
 P. Karabinos

18. Terrain modification in Google Earth using SketchUp: An example from
 the Western Blue Ridge of Tennessee 253
 J.S. Hill and M.J. Harrison

19. Interacting with existing 3D photorealistic outcrop models on site and in the lab or
 classroom, facilitated with an iPad and a PC 263
 M. Wang, M.I. Rodriguez-Gomez, and C.L.V. Aiken

III. Virtual Field Experiences

20. Virtual fieldwork in geoscience teacher education: Issues, techniques, and models 285
 F.D. Granshaw and D. Duggan-Haas

21. Developing virtual field experiences for undergraduates with high-resolution panoramas
 (GigaPans) at multiple scales 305
 J.L. Piatek, C.L. Kairies Beatty, W.L. Beatty, M.C. Wizevich, and A. Steullet

22. Avatars and multi-student interactions in Google Earth–based virtual field experiences 315
 M.M. Dordevic and S.C. Wild

23. A geology-focused virtual field trip to Tenerife, Spain ... 323
 N.P. Lang, K.T. Lang, and B.M. Camodeca
Contents

24. Moving New York State Geological Association guidebooks into Google Earth 335
 O.H. Muller

25. Benedict Arnold's march to Quebec in 1775: An historical characterization using
 Google Earth ... 347
 B.F. Rueger and E.N. Beck

 and virtual field trips for an introductory geology class ... 355
 J.D. Eusden Jr., M. Duvall, and M. Bryant

27. Google Venus ... 367
 D.G. De Paor, V.L. Hansen, and M.M. Dordevic

IV. Educational Models, Learning Methods, and Assessment

28. Best practices on how to design Google Earth tours for education 383
 R. Treves and J.E. Bailey

29. Building an education game with the Google Earth application programming interface to
 enhance geographic literacy .. 395
 Tsan-Kuang Lee and L. Guertin

30. Developing a scope and sequence for using Google Earth in the middle school
 earth science classroom .. 403
 H. Almquist, L. Blank, and J. Estrada

31. Google Earth geo-education resources: A transnational approach from Ireland, Iceland,
 Finland, and Norway ... 413
 R. Hennessy, T. Arnason, I. Ratinen, and L. Rubensdotter

32. Using Google Earth to teach geomorphology ... 419
 H.A.S. Dolliver

33. Development of a web-based hydrologic education tool using Google Earth resources 431
 E. Habib, Y. Ma, and D. Williams

34. Oceanography and Google Earth: Observing ocean processes with time animations and
 student-built ocean drifters .. 441
 A. Hochstaedter and D. Sullivan

35. Testing the effects of prior coursework and gender on geoscience learning with
 Google Earth .. 453
 J. Gobert, S.C. Wild, and L. Rossi