Encapsulation
technologies and delivery
systems for food
ingredients and
nutraceuticals

Edited by
Nissim Garti and D. Julian McClements
Contents

Contributor contact details ... xiii

Woodhead Publishing Series in Food Science, Technology and Nutrition ... xvii

Preface .. xxv

Part I Requirements for food ingredient and nutraceutical delivery systems .. 1

1 **Requirements for food ingredient and nutraceutical delivery systems** .. 3

D. J. McClements, University of Massachusetts, USA

1.1 Introduction ... 3

1.2 Active components and the need for encapsulation 6

1.3 Fabrication and characteristics of delivery systems 10

1.4 Particle characteristics, physicochemical properties and functional performance 12

1.5 Future trends .. 16

1.6 References ... 17

2 **Challenges in developing delivery systems for food additives, nutraceuticals and dietary supplements** 19

M. A. Augustin and L. Sanguansri, CSIRO Animal Food and Health Sciences, Australia

2.1 Introduction ... 19

2.2 Classes of food ingredients ... 20

© Woodhead Publishing Limited, 2012
Contents

2.3 Formulating and designing microencapsulation systems for food additives, nutraceuticals and dietary supplements ... 25
2.4 Encapsulated ingredients and applications .. 30
2.5 The market for encapsulated ingredients and nutraceuticals 37
2.6 Future trends ... 39
2.7 Acknowledgement .. 41
2.8 References .. 41

3 Interaction of food ingredient and nutraceutical delivery systems with the human gastrointestinal tract ... 49
A. Mackie, Institute of Food Research, UK
3.1 Introduction .. 49
3.2 Model systems ... 50
3.3 The human gastrointestinal tract .. 58
3.4 Bioactive delivery system design ... 63
3.5 Implications of research on functional food development 64
3.6 Future trends .. 64
3.7 Sources of further information .. 65
3.8 References .. 65

Part II Processing technology approaches to produce encapsulation and delivery systems ... 71

4 Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation ... 73
Z. Fang, Curtin University, Australia and B. Bhandari, The University of Queensland, Australia
4.1 Introduction .. 73
4.2 Principles and technical considerations of spray drying encapsulation 75
4.3 Applications of spray drying for food ingredient and nutraceutical encapsulation ... 80
4.4 Storage stability of spray dried encapsulated products and limitations of spray drying encapsulation ... 88
4.5 Principles and technical considerations of freeze drying encapsulation ... 91
4.6 Applications of freeze drying for food ingredient and nutraceutical encapsulation ... 94
4.7 Storage stability of freeze encapsulated products and limitations of freeze drying encapsulation ... 98
<table>
<thead>
<tr>
<th>Contents</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8 Future trends and conclusions</td>
<td>101</td>
</tr>
<tr>
<td>4.9 References</td>
<td>102</td>
</tr>
<tr>
<td>5 Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation</td>
<td>110</td>
</tr>
<tr>
<td>J. D. Oxley, Southwest Research Institute, USA</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction: principles of spray chilling</td>
<td>110</td>
</tr>
<tr>
<td>5.2 Spray cooling and spray chilling technologies</td>
<td>113</td>
</tr>
<tr>
<td>5.3 Formulations and applications</td>
<td>120</td>
</tr>
<tr>
<td>5.4 Future trends</td>
<td>126</td>
</tr>
<tr>
<td>5.5 Sources of further information</td>
<td>128</td>
</tr>
<tr>
<td>5.6 Reference</td>
<td>129</td>
</tr>
<tr>
<td>6 Coextrusion for food ingredients and nutraceutical encapsulation: principles and technology</td>
<td>131</td>
</tr>
<tr>
<td>J. D. Oxley, Southwest Research Institute, USA</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>131</td>
</tr>
<tr>
<td>6.2 Principles of coextrusion</td>
<td>133</td>
</tr>
<tr>
<td>6.3 Coextrusion technologies</td>
<td>138</td>
</tr>
<tr>
<td>6.4 Formulations and applications</td>
<td>142</td>
</tr>
<tr>
<td>6.5 Future trends</td>
<td>146</td>
</tr>
<tr>
<td>6.6 Sources of further information</td>
<td>148</td>
</tr>
<tr>
<td>6.7 Reference</td>
<td>149</td>
</tr>
<tr>
<td>7 Fluid bed microencapsulation and other coating methods for food ingredient and nutraceutical bioactive compounds</td>
<td>151</td>
</tr>
<tr>
<td>J. A. Meiners, Laboratoire Meiners Sàrl, Switzerland</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction: principles and purposes</td>
<td>151</td>
</tr>
<tr>
<td>7.2 Definition of microencapsulation and fluidized bed coating</td>
<td>156</td>
</tr>
<tr>
<td>7.3 Technology and machine design</td>
<td>161</td>
</tr>
<tr>
<td>7.4 Particle characteristics, process parameters and applications of fluid bed microencapsulation</td>
<td>169</td>
</tr>
<tr>
<td>7.5 Future trends</td>
<td>174</td>
</tr>
<tr>
<td>7.6 Reference</td>
<td>174</td>
</tr>
<tr>
<td>8 Microencapsulation methods based on biopolymer phase separation and gelation phenomena in aqueous media</td>
<td>177</td>
</tr>
<tr>
<td>C. Thies, Washington University, USA</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>8.2 Candidate biopolymer shell materials</td>
<td>179</td>
</tr>
<tr>
<td>8.3 Biopolymer solution properties and microcapsule formation</td>
<td>184</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2012
Contents

8.4 Encapsulation technology .. 189
8.5 Traditional versus emerging complex coacervation encapsulation procedures .. 194
8.6 Conclusions .. 201
8.7 References .. 202

Part III Physicochemical approaches to produce encapsulation and delivery systems .. 209

9 Micelles and microemulsions as food ingredient and nutraceutical delivery systems .. 211
N. Garti and A. Aserin, The Hebrew University of Jerusalem, Israel
9.1 Introduction .. 211
9.2 Microemulsions: definitions and terminology 213
9.3 Water-in-oil (W/O) and oil-in-water (O/W) microemulsions .. 216
9.4 Solubilization of nutraceuticals in U-type microemulsions .. 225
9.5 Microemulsion processes and applications 236
9.6 Conclusions .. 243
9.7 References .. 244

10 Biopolymeric amphiphiles and their assemblies as functional food ingredients and nutraceutical delivery systems .. 252
Y. D. Livney, Technion – Israel Institute of Technology, Israel
10.1 Introduction .. 252
10.2 Classification, composition, structure, properties and self-assembly of polymeric amphiphiles: proteins and peptides .. 256
10.3 Classification, composition, structure, properties and self-assembly of polymeric amphiphiles: polysaccharides, oligosaccharides and polysaccharide-protein conjugates .. 260
10.4 Binding and co-assembly of biopolymeric amphiphiles and nutraceuticals .. 264
10.5 Mechanisms of solubilization and protection of hydrophobic nutraceuticals by biopolymeric amphiphiles .. 266
10.6 Applications and future trends of biopolymeric amphiphiles for encapsulation and delivery of food ingredients and nutraceuticals .. 268
10.7 Sources of further information and advice 272
10.8 References .. 273

© Woodhead Publishing Limited, 2012
11 Liposomes as food ingredients and nutraceutical delivery systems .. 287
H. Singh, Massey University, New Zealand,
A. Thompson, Pepsico UK, UK, W. Liu, Nanchang University,
China and M. Corredig, University of Guelph, Canada
11.1 Introduction .. 287
11.2 Formation and structures of liposomes .. 289
11.3 Liposome preparation methods .. 294
11.4 Characterization of liposomes ... 297
11.5 Encapsulation by liposomes .. 300
11.6 Liposome stability .. 302
11.7 Liposome applications in food systems .. 307
11.8 Stability of liposomes to gastrointestinal environment ... 312
11.9 Conclusions .. 313
11.10 References ... 313

12 Colloidal emulsions and particles as micronutrient and nutraceutical delivery systems 319
K. P. Velikov, Unilever R&D Vlaardingen, The Netherlands and Utrecht University, The Netherlands
12.1 Introduction .. 319
12.2 Physico-chemical stability, texture, taste and flavour ... 325
12.3 Appearance of dispersions in food products .. 330
12.4 Bioavailability of functional ingredients ... 333
12.5 Applications: overview of minerals and vitamins .. 338
12.6 Applications: vitamin A .. 342
12.7 Applications: vitamins D, E and K ... 349
12.8 Nutraceuticals: carotenoids .. 352
12.9 Nutraceuticals: water-soluble polyphenols ... 360
12.10 Nutraceuticals: water-insoluble polyphenols ... 362
12.11 Alkaloids and other photochemicals .. 372
12.12 Conclusions and future trends .. 374
12.13 Acknowledgments ... 375
12.14 References ... 375

13 Structured oils and fats (organogels) as food ingredient and nutraceutical delivery systems 392
A. K. Zetzl and A. G. Marangoni, University of Guelph, Canada
13.1 Introduction ... 392
13.2 Research into organogelation as food ingredient and nutraceutical delivery systems 393
13.3 Nutraceuticals and their use in organogels .. 399
13.4 Delivery of carotenoids: lycopene and β-carotene ... 401
13.5 Health effects and delivery of phytosterols.......................... 404
13.6 Conclusions .. 407
13.7 References .. 408

14 Hydrogel particles and other novel protein-based methods for food ingredient and nutraceutical delivery systems 412
Y. Wang, F. Bamdad, Y. Song and L. Chen, University of Alberta, Canada
14.1 Introduction.. 412
14.2 Food grade polysaccharides and proteins for hydrogel formation... 413
14.3 Development of polysaccharide- and protein-based hydrogels: physical crosslinking approach 417
14.4 Development of polysaccharide- and protein-based hydrogels: chemical crosslinking approach 420
14.5 Polysaccharide- and protein-based hydrogels ... 422
14.6 Diffusion as a controlled-release mechanism 424
14.7 Degradation as a controlled-release mechanism 432
14.8 Other controlled-release mechanisms 436
14.9 Applications in food science ... 440
14.10 Future trends .. 443
14.11 References .. 444

Part IV Characterization and applications of delivery systems..... 451

15 An industry perspective on the advantages and disadvantages of different flavor delivery systems ... 453
P.-E. Bouquerand, G. Dardelle, P. Erni, Firmenich SA, Switzerland and V. Normand, Firmenich Inc., USA
15.1 Introduction .. 453
15.2 Physical chemistry of flavor delivery systems: interfaces in emulsion-based delivery systems 458
15.3 Barrier properties and permeation in core/shell delivery systems .. 464
15.4 Molecular weight distributions in glassy systems 470
15.5 Conclusions and future trends .. 477
15.6 References and further reading .. 478

16 An industry perspective on the advantages and disadvantages of different fish oil delivery systems .. 488
S. Drusch, Technical University of Berlin, Germany
16.1 Introduction ... 488
16.2 Health benefits associated with long chain omega-3s 489
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 Fish oil delivery systems used in industry</td>
<td>492</td>
</tr>
<tr>
<td>16.4 Future trends: emerging strategies and technologies</td>
<td>500</td>
</tr>
<tr>
<td>16.5 Sources of further information and advice</td>
<td>501</td>
</tr>
<tr>
<td>16.6 References</td>
<td>501</td>
</tr>
<tr>
<td>17 An industry perspective on the advantages and disadvantages of iron micronutrient delivery systems</td>
<td>505</td>
</tr>
<tr>
<td>N. J. Zuidam, Unilever R&D Vlaardingen, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>17.1 Introduction</td>
<td>505</td>
</tr>
<tr>
<td>17.2 Delivery systems of iron</td>
<td>507</td>
</tr>
<tr>
<td>17.3 Criteria for selection of food product, iron compound and delivery system</td>
<td>519</td>
</tr>
<tr>
<td>17.4 Application of iron delivery systems in dry food products</td>
<td>523</td>
</tr>
<tr>
<td>17.5 Application of iron delivery systems as simulated rice and food sprinkles</td>
<td>526</td>
</tr>
<tr>
<td>17.6 Application of iron delivery systems in dairy products and aqueous food products</td>
<td>530</td>
</tr>
<tr>
<td>17.7 Conclusions and future trends</td>
<td>534</td>
</tr>
<tr>
<td>17.8 References</td>
<td>536</td>
</tr>
<tr>
<td>18 Properties and applications of different probiotic delivery systems</td>
<td>541</td>
</tr>
<tr>
<td>W. Krasaeekoopt, Assumption University, Thailand and B. Bhandari, The University of Queensland, Australia</td>
<td></td>
</tr>
<tr>
<td>18.1 Introduction</td>
<td>541</td>
</tr>
<tr>
<td>18.2 Microencapsulation techniques: physical methods</td>
<td>546</td>
</tr>
<tr>
<td>18.3 Microencapsulation techniques: chemical methods (hydrocolloid gel methods)</td>
<td>552</td>
</tr>
<tr>
<td>18.4 Supporting materials</td>
<td>564</td>
</tr>
<tr>
<td>18.5 Special treatment</td>
<td>571</td>
</tr>
<tr>
<td>18.6 Application of microencapsulated probiotics in food products</td>
<td>576</td>
</tr>
<tr>
<td>18.7 Future trends</td>
<td>580</td>
</tr>
<tr>
<td>18.8 References and further reading</td>
<td>580</td>
</tr>
</tbody>
</table>

Index .. 595

© Woodhead Publishing Limited, 2012