Part Two

8314 2K **Semi-automatic intracranial tumor segmentation and tumor tissue classification based on multiple MR protocols [8314-91]**
A. Franz, Philips Research (Germany); H. Tschampa, A. Müller, Univ. Hospital Bonn (Germany); S. Remmele, C. Stehning, J. Keupp, Philips Research (Germany); J. Gieseke, Philips Healthcare (Germany); H. H. Schild, P. Mürtz, Univ. Hospital Bonn (Germany)

8314 2L **A multi-dimensional model for localization of highly variable objects [8314-92]**
H. Ruppertshofen, Univ. of Applied Sciences Kiel (Germany) and Otto-von-Guericke-Univ. Magdeburg (Germany); T. Bülow, J. von Berg, Philips Research Labs. (Germany); S. Schmidt, Univ. of Applied Sciences Wildau (Germany) and Otto-von-Guericke-Univ. Magdeburg (Germany); P. Beyertein, Univ. of Applied Sciences Wildau (Germany); Z. Salah, G. Rose, Otto-von-Guericke Univ. Magdeburg (Germany); H. Schramm, Univ. of Applied Sciences Kiel (Germany)
8314 2M Improving semi-automated segmentation by integrating learning with active sampling [8314-93]
J. Huo, Univ. of California, Los Angeles (United States); K. Okada, San Francisco State Univ.
(United States); M. Brown, Univ. of California, Los Angeles (United States)

8314 2N Robust lumen segmentation of coronary arteries in 2D angiographic images [8314-94]
M. Polianskaya, C. Schwemmer, A. Linarth, Friedrich-Alexander-Univ. Erlangen-Nuremberg
(Germany); G. Lauritsch, Siemens AG (Germany); J. Hornegger, Friedrich-Alexander-Univ.
Erlangen-Nuremberg (Germany)

8314 2O Extraction of liver volumetry based on blood vessel from the portal phase CT dataset [8314-95]
A. S. Maklad, M. Matsuhiro, H. Suzuki, Y. Kawata, N. Niki, T. Utsumiya, M. Shimada, Univ. of
Tokushima (Japan)

8314 2P Segmentation of the pectoral muscle in breast MR images using structure tensor and
deformable model [8314-96]
M. Lee, Seoul National Univ. (Korea, Republic of); J. H. Kim, Seoul National Univ. (Korea,
Republic of)

8314 2Q A new prostate segmentation approach using multispectral magnetic resonance imaging
and a statistical pattern classifier [8314-97]
B. Maan, F. van der Heijden, Univ. of Twente (Netherlands); J. J. Futterer, Radboud Univ.
Nijmegen Medical Ctr. (Netherlands)

8314 2R Design of spectral filtering for tissue classification [8314-98]
A. Narayanan, P. Shah, B. Das, GE Global Research (India)

8314 2S Robust left ventricular myocardium segmentation for multi-protocol MR [8314-99]
A. Groth, J. Weese, H. Lehmann, Philips Research Labs. (Germany)

8314 2T Supervised classification of brain tissues through local multi-scale texture analysis by
coupling DIR and FLAIR MR sequences [8314-100]
E. Poletti, E. Veronese, M. Calabrese, A. Bertolfo, E. Grisan, Univ. of Padova (Italy)

8314 2U Fast automatic algorithm for bifurcation detection in vascular CTA scans [8314-101]
M. Brozio, V. Gorbunova, C. Godenschwager, Siemens Healthcare (Germany); T. Beck,
Siemens Healthcare (Germany) and Karlsruhe Institute of Technology (Germany);
D. Bernhardt, Siemens Healthcare (Germany)

8314 2V Pulmonary lobe segmentation with level sets [8314-103]
A. Schmidt-Richberg, J. Ehrhardt, M. Wilms, R. Werner, H. Handels, Univ. of Lübeck (Germany)

8314 2W Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images [8314-104]
Z. Gao, R. W. Grout, E. A. Hoffman, P. K. Saha, The Univ. of Iowa (United States)

8314 2X Binary image representation by contour trees [8314-105]
D. B. Aydogan, J. Hyttinen, Tampere Univ. of Technology (Finland)
An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images [8314-106]
J. Wu, Univ. of Surrey (United Kingdom); G. Ferns, Keele Univ. (United Kingdom); J. Giles, Conquest Hospital (United Kingdom); E. Lewis, Univ. of Surrey (United Kingdom)

Three dimensional multi-scale visual words for texture-based cerebellum segmentation [8314-107]
A. Foncubierta-Rodríguez, Univ. of Applied Sciences Western Switzerland (Switzerland); A. Depeursinge, Univ. of Applied Sciences Western Switzerland (Switzerland) and Univ. Hospital of Geneva (Switzerland); L. Gul, Univ. Hospital of Geneva (Switzerland); H. Müller, Univ. of Applied Sciences Western Switzerland (Switzerland) and Univ. Hospital of Geneva (Switzerland)

Finding seeds for segmentation using statistical fusion [8314-108]
F. Xing, The Johns Hopkins Univ. (United States); A. J. Asman, Vanderbilt Univ. (United States); J. L. Prince, The Johns Hopkins Univ. (United States); B. A. Landman, Vanderbilt Univ. (United States) and The Johns Hopkins Univ. (United States)

Watershed-based segmentation of the corpus callosum in diffusion MRI [8314-110]
P. Freitas, L. Rittner, S. Appenzeller, A. Lapci, R. Lotufo, Univ. of Campinas (Brazil)

Computational Intelligence techniques for identifying the pectoral muscle region in mammograms [8314-111]
H. E. Rickard, R. G. Villao, Coastal Carolina Univ. (United States); A. S. Elmaghraby, Univ. of Louisville (United States)

GrowCut-based fast tumor segmentation for 3D magnetic resonance images [8314-112]
T. Yamasaki, Cornell Univ. (United States), The Univ. of Tokyo (Japan), and Japan Society for the Promotion of Science (Japan); T. Chen, Cornell Univ. (United States); M. Yagi, Osaka Univ. (Japan); T. Hirai, R. Murakami, Kumamoto Univ. (Japan)

Automatic detection of significant and subtle arterial lesions from coronary CT angiography [8314-113]
D. Kang, Univ. of Southern California (United States); P. Slomka, R. Nakazato, Y. Y. Cheng, J. K. Min, D. Li, D. S. Berman, Cedars-Sinai Medical Ctr. (United States); C.-C. J. Kuo, Univ. of Southern California (United States); D. Dey, Cedars-Sinai Medical Ctr. (United States)

Automatic segmentation of the liver using multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images [8314-114]
Y. Jang, H. Hong, Seoul Women’s Univ. (Korea, Republic of); J. W. Chung, Y. H. Yoon, Seoul National Univ. Hospital (Korea, Republic of)

A novel approach for three dimensional dendrite spine segmentation and classification [8314-115]
T. He, Z. Xue, S. T. C. Wong, Methodist Hospital Research Institute (United States)

Segmentation algorithm of colon based on multi-slice CT colonography [8314-116]
Y. Hu, M. S. Ahamed, E. Takahashi, H. Suzuki, Y. Kawata, N. Niki, Univ. of Tokushima (Japan); M. Suzuki, G. Linuma, N. Moriyama, National Cancer Ctr. (Japan)
Automatic segmentation and analysis of fibrin networks in 3D confocal microscopy images [8314-117]
X. Liu, J. Mu, Univ. of Notre Dame (United States); K. R. Machlus, A. S. Wolberg, Univ. of North Carolina at Chapel Hill (United States); E. D. Rosen, Indiana Univ. School of Medicine (United States); Z. Xu, M. S. Alber, D. Z. Chen, Univ. of Notre Dame (United States)

Placental fetal stem segmentation in a sequence of histology images [8314-118]
P. Athavale, Univ. of Toronto (Canada); L. A. Vese, Univ. of California, Los Angeles (United States)

Fully automated 3D prostate central gland segmentation in MR images: a LOGISMOS based approach [8314-119]
Y. Yin, S. V. Fotin, S. Periaswamy, J. Kunz, H. Haldankar, N. Muradyan, iCAD, Inc. (United States); B. Turkbey, P. Choyke, National Cancer Institute (United States)

A unifying graph-cut image segmentation framework: algorithms it encompasses and equivalences among them [8314-120]
K. C. Ciesielski, West Virginia Univ. (United States) and The Univ. of Pennsylvania (United States); J. K. Udupa, The Univ. of Pennsylvania Health System (United States); A. X. Faicã, Univ. of Campinas (Brazil); P. A. V. Miranda, Univ. of São Paulo (Brazil)

Automatic 3D segmentation of the kidney in MR images using wavelet feature extraction and probability shape model [8314-121]
H. Akbari, B. Fei, Emory Univ. (United States) and Georgia Institute of Technology (United States)

Automatic organ segmentation on torso CT images by using content-based image retrieval [8314-122]
X. Zhou, A. Watanabe, Gifu Univ. School of Medicine (Japan); X. Zhou, Nagoya Bunri Univ. (Japan); T. Hara, Gifu Univ. School of Medicine (Japan); R. Yokoyama, M. Kanematsu, Gifu Univ. Hospital (Japan); H. Fujita, Gifu Univ. School of Medicine (Japan)

An improved fuzzy c-means algorithm for unbalanced sized clusters [8314-123]
S. Gu, J. Liu, Q. Xie, L. Wang, Wuhan National Lab. for Optoelectronics (China) and Huazhong Univ. of Science and Technology (China)

Graph representation of hepatic vessel based on centerline extraction and junction detection [8314-124]
X. Zhang, J. Tian, Institute of Automation (China); K. Deng, Xidian Univ. (China); X. Li, F. Yang, Institute of Automation (China)

Vessel centerline extraction in phase-contrast MR images using vector flow information [8314-125]
Y.-J. Jeong, Karlsruher Institute of Technology (Germany); S. Ley, Univ. Hospital Heidelberg (Germany) and Univ. of Toronto (Canada); R. Dillmann, R. Unterhinninghofen, Karlsruher Institute of Technology (Germany)

A fuzzy clustering vessel segmentation method incorporating line-direction information [8314-126]
Z. Wang, W. Xiong, W. Huang, J. Zhou, A*STAR Institute for Infocomm Research (Singapore); S. K. Venkatesh, National Univ. of Singapore School of Medicine (Singapore)
POSTER SESSION: SHAPE

8314 3K A framework for longitudinal data analysis via shape regression [8314-127]
J. Fishbaugh, S. Durie, The Univ. of Utah (United States); J. Piven, The Univ. of North Carolina at Chapel Hill (United States); G. Gerig, The Univ. of Utah (United States)

8314 3L 3D reconstruction of the scapula from biplanar radiographs [8314-128]
P. Y. Lagace, T. Cresson, N. Hagemeister, Ecole de Technologie Superieure (Canada); F. Billuart, X. Oh, Ecole Nationale Superieure d'Arts et Metiers (France); J. de Guise, Ecole de Technologie Superieure (Canada); W. Skalli, Ecole Nationale Superieure d'Arts et Metiers (France)

8314 3M A shape-based statistical method to retrieve 2D TRUS-MR slice correspondence for prostate biopsy [8314-129]
J. Mitra, Le2i, CNRS, Univ. de Bourgogne (France) and Univ. de Girona (Spain); A. Srikantha, D. Sidibé, Le2i, CNRS, Univ. de Bourgogne (France); R. Martí, A. Oliver, X. Lladó, Univ. de Girona (Spain); S. Ghose, Le2i, CNRS, Univ. de Bourgogne (France) and Univ. de Girona (Spain); J. C. Vilanova, Girona Magnetic Resonance Ctr. (Spain); J. Comet, Hospital Dr. Josep Trueta (Spain); F. Meriaudeau, Le2i, CNRS, Univ. de Bourgogne (France)

8314 3N Shape-constrained multi-atlas based segmentation with multichannel registration [8314-130]
Y. Hao, T. Jiang, Y. Fan, Institute of Automation (China)

8314 3O Automated detection of pain from facial expressions: a rule-based approach using AAM [8314-131]
Z. Chen, R. Ansari, D. J. Wilkie, Univ. of Illinois at Chicago (United States)

POSTER SESSION: IMAGE ENHANCEMENT

8314 3P Tomographic reconstruction of Cerenkov photons in tissues through approximate message-passing [8314-132]
J. Zhong, J. Tian, H. Liu, C. Qin, X. Yang, X. Ma, Institute of Automation (China)

8314 3Q Quantization of reconstruction error with an interval-based algorithm: an experimental comparison [8314-133]
A. Hassoun, O. Strauss, Lab. d'Informatique de Robotique et de Microelectronique de Montpellier, CNRS, Univ. Montpellier (France)

8314 3R Blind local noise estimation for medical images reconstructed from rapid acquisition [8314-134]
X. Pan, X. Zhang, S. Lyu, Univ. at Albany (United States)

8314 3S Optimization of reconstruction for the registration of CT liver perfusion sequences [8314-135]
B. Romain, Philips Healthcare (France), Ecole Central Paris (France), and Lab. IBISC, Univ. d'Evry-Val (France); V. Letort, Ecole Centrale Paris (France); O. Lucidarme, Hospital La Pitie-Salpetriere (France); F. d'Alché-Buc, Lab. IBISC, Univ. d'Evry-Val (France) and The National Institute for Research in Computer Science and Control, CNRS (France); L. Rouet, Philips Healthcare (France)
8314 3U **Image fusion in x-ray differential phase-contrast imaging** [8314-137]
Erlangen-Nürnberg (Germany)

8314 3V **Super-resolution reconstruction in MRI: better images faster?** [8314-138]
E. Plenge, D. H. J. Poot, M. Bernsen, G. Kotek, G. Houston, P. Wielopolski, Erasmuc MC
(Netherlands); L. van der Weerd, Leiden Univ. Medical Ctr. (Netherlands); W. J. Niessen,
Erasmuc MC (Netherlands) and Delft Univ. of Technology (Netherlands); E. Meijering,
Erasmuc MC (Netherlands)

8314 3W **An iterative hard thresholding algorithm for CS MRI** [8314-139]
S. R. Rajani, M. R. Reddy, Indian Institute of Technology Madras (India)

8314 3X **Image quality improvement through fusion of hybrid bone- and soft-tissue-texture filtering
for 3D cone beam CT extremity imaging system** [8314-140]
D. Yang, R. A. Senn, N. Packard, J. Yorkston, D. H. Foos, Carestream Health, Inc. (United
States)

8314 3Y **Quality evaluation for metal influenced CT data** [8314-141]
B. Kratz, S. Ens, C. Kaethner, J. Müller, T. M. Buzug, Univ. of Lübeck (Germany)

8314 3Z **Denoising of 4D cardiac micro-CT data using median-centric bilateral filtration** [8314-142]
D. Clark, G. A. Johnson, C. T. Badea, Duke Univ. Medical Ctr. (United States)

8314 40 **Confidence map-based super-resolution reconstruction** [8314-143]
W. El Hakimi, Technische Univ. Darmstadt (Germany); S. Wesarg, Cognitive Computing &
Medical Imaging (IGD) (Germany)

8314 41 **Enhancing super-resolution reconstructed image quality in 3D MR images using simulated
annealing** [8314-144]
S. ur Rahman, T. Vateva, Technische Univ. Darmstadt (Germany); S. Wesarg,
Fraunhofer-Institut für Graphische Datenverarbeitung (Germany)

8314 42 **A novel iterative non-local means algorithm for speckle reduction** [8314-145]
Y. Zhan, X. Zhang, M. Ding, Huazhong Univ. of Science and Technology (China)

8314 43 **Additive Dirichlet models for projectional images** [8314-147]
S. Williams, M. J. Bottema, Flinders Univ. (Australia)

8314 44 **Prediction coefficient estimation in Markov random fields for iterative x-ray CT
reconstruction** [8314-148]
J. Wang, K. Sauer, Univ. of Notre Dame (United States); J.-B. Thibault, Z. Yu, GE Healthcare
(United States); C. Bouman, Purdue Univ. (United States)

POSTER SESSION: NEURO APPLICATIONS

8314 45 **Gliai brain tumor detection by using symmetry analysis** [8314-149]
V. Pedoia, E. Binaghi, S. Balbi, A. De Benedictis, E. Monti, Univ. degli Studi dell'Insubria (Italy);
R. Minotto, Ospedale di Circolo Fondazione Macchi Varese (Italy)
Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability [8314-150]
T. Samaille, O. Colliot, R. Cuingnet, Univ. Pierre et Marie Curie (France), INSERM (France), Ctr. National de la Recherche Scientifique (France), and ICM - Institut du Cerveau et de la Moelle épinière (France); E. Jouvent, H. Chabriat, Hopital Lariboisière (France); D. Dormont, M. Chupin, Univ. Pierre et Marie Curie (France), INSERM (France), Ctr. National de la Recherche Scientifique (France), and CHU Lariboisière (France)

Labeling of the cerebellar peduncles using a supervised Gaussian classifier with volumetric tract segmentation [8314-151]
C. Ye, The Johns Hopkins Univ. (United States); P.-L. Bazin, Max-Planck-Institute for Human Cognitive and Brain Sciences (Germany); J. A. Bogovic, The Johns Hopkins Univ. (United States); S. H. Ying, The Johns Hopkins Univ. School of Medicine (United States); J. L. Prince, The Johns Hopkins Univ. (United States)

Intracranial aneurysm growth quantification in CTA [8314-152]
A. Firouzian, Erasmus MC (Netherlands); R. Manniesing, Radboud Univ. Nijmegen Medical Ctr. (Netherlands); C. T. Metz, S. Klein, Erasmus MC (Netherlands); B. K. Velthuis, G. J. E. Rinkel, Univ. Medical Ctr. Utrecht (Netherlands); A. van der Lugt, Erasmus MC (Netherlands); W. J. Niessen, Erasmus MC (Netherlands) and Delft Univ. of Technology (Netherlands)

A field map estimation strategy without the noise-bandwidth tradeoff [8314-153]
J. Dagher, Massachusetts General Hospital (United States) and Harvard Medical School (United States); A. Bilgin, The Univ. of Arizona (United States)

Fiber estimation errors incurred from truncated sampling in q-space diffusion magnetic resonance imaging [8314-154]
B. Wilkins, N. Lee, M. Singh, The Univ. of Southern California (United States)

Brain tissue segmentation in 4D CT using voxel classification [8314-155]

Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM [8314-156]
F. Mokhtari, S. K. Bakhliari, G. A. Hossein-Zadeh, Univ. of Tehran (Iran, Islamic Republic of); H. Soltanian-Zadeh, Univ. of Tehran (Iran, Islamic Republic of) and Henry Ford Health System (United States)

MITK global tractography [8314-157]
P. F. Neher, B. Stieltjes, German Cancer Research Ctr. (Germany); M. Reisert, Univ. Hospital Freiburg (Germany); I. Reicht, H.-P. Meinzer, K. H. Fritzschke, German Cancer Research Ctr. (Germany)

ISMI: a classification index for high angular resolution diffusion imaging [8314-158]
D. Röttger, D. Dudai, Univ. of Koblenz-Landau (Germany); D. Merhof, Univ. of Konstanz (Germany); S. Müller, Univ. of Koblenz-Landau (Germany)
Intrinsic functional connectivity pattern-based brain parcellation using normalized cut [8314-159]
H. Cheng, D. Song, Institute of Automation (China); H. Wu, Univ. of Electronic Science and Technology of China (China); Y. Fan, Institute of Automation (China)

Accelerated diffusion spectrum imaging via compressed sensing for the human connectome project [8314-160]
N. Lee, B. Wilkins, M. Singh, The Univ. of Southern California (United States)

Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM [8314-161]
M. Esmaeilzadeh, The Australian National Univ. (Australia) and Univ. of Tehran (Iran, Islamic Republic of); H. Soitanian-Zadeh, Univ. of Tehran (Iran, Islamic Republic of) and Henry Ford Hospital (United States); K. Jafari-Khouzani, Henry Ford Hospital (United States)

Segmentation of the optic tracts using graph-based techniques [8314-162]
J. H. Noble, P.-F. D'Haese, B. M. Dawant, Vanderbilt Univ. (United States)

Detection of abrupt motion in DCE-MRI [8314-163]
K. Rajamani, D. Shanbhag, R. Mullick, S. Ranjan, U. Patil, GE Global Research (India); S. N. Gupta, GE Global Research (United States)

Retinal vessel width measurement at branching points using an improved electric field theory-based graph approach [8314-165]
X. Xu, The Univ. of Iowa (United States); M. D. Abrámoff, The Univ. of Iowa (United States) and Veteran's Administration Medical Ctr. (United States); G. Bertelsen, Univ. of Tromsoe (Norway); J. M. Reinhardt, The Univ. of Iowa (United States)

Multi-slice and multi-frame image reconstruction by predictive compressed sensing [8314-167]
J. Zhang, J. Wang, G. Xu, Univ. of Wisconsin-Milwaukee (United States); J.-B. Thibault, GE Healthcare (United States)

Compressed sensing for phase-contrast computed tomography (Cum Laude Poster Award) [8314-168]
T. Gaass, G. Potdevin, M. Bech, J. Herzen, M. Willner, P. B. Noël, A. Tapfer, F. Pfeiffer, A. Haase, Technische Univ. München (Germany)

A feasibility study for compressed sensing combined phase contrast MR angiography reconstruction [8314-169]
D.-H. Lee, C.-P. Hong, Yonsei Univ. (Korea, Republic of); M.-W. Lee, Genpia Co. (Korea, Republic of); B.-S. Han, Yonsei Univ. (Korea, Republic of)

Quality assessment of fast wavelet-encoded MRI utilizing compressed sensing [8314-170]
Z. Liu, B. Nutter, S. Mitra, Texas Tech Univ. (United States)
POSTER SESSION: FUNCTIONAL IMAGING

8314 4Q Rician compressed sensing for fast and stable signal reconstruction in diffusion MRI [8314-171]
S. Dolui, A. Kuurstra, O. V. Michailovich, Univ. of Waterloo (Canada)

8314 4R Model-based blood flow quantification from DSA: quantitative evaluation on patient data and comparison with TCCD [8314-172]
I. Waechter-Stehle, A. Groth, Philips Research Labs. (Germany); T. Bruilens, Philips Healthcare (Netherlands); O. Brina, Univ. Hospital of Geneva (Switzerland); D. A. Ruefenacht, Z. Kulcsar, Clinic Hirslanden (Switzerland); V. Mendes-Pereira, F. Perren, Univ. Hospital of Geneva (Switzerland); D. J. Hawkes, Univ. College London (United Kingdom); J. Weese, Philips Research Labs. (Germany)

8314 4S Identification of subject specific and functional consistent ROIs using semi-supervised learning [8314-173]
Y. Du, H. Li, Institute of Automation (China); H. Wu, Univ. of Electronic Science and Technology of China (China); Y. Fan, Institute of Automation (China)

8314 4T ADHD classification using bag of words approach on network features [8314-174]
B. Solmaz, S. Dey, Univ. of Central Florida (United States); A. R. Rao, IBM Thomas J. Watson Research Ctr. (United States); M. Shah, Univ. of Central Florida (United States)

8314 4U Measurement of glucose concentration by image processing of thin film slides [8314-175]
S. Piramanayagam, E. Saber, Rochester Institute of Technology (United States); D. Heavner, Ortho Clinical Diagnostics, Inc. (United States)

POSTER SESSION: CLASSIFICATION

8314 4V Cascaded classifier for large-scale data applied to automatic segmentation of articular cartilage [8314-176]
A. Prasoon, C. Igel, Univ. of Copenhagen (Denmark); M. Loog, Univ. of Copenhagen (Denmark) and Delft Univ. of Technology (Netherlands); F. Lauze, Univ. of Copenhagen (Denmark); E. Dam, BioMed IQ (Denmark); M. Nielsen, Univ. of Copenhagen (Denmark) and BioMed IQ (Denmark)

8314 4W Digitized tissue microarray classification using sparse reconstruction [8314-177]
F. Xing, Rutgers, The State Univ. of New York (United States), Robert Wood Johnson Medical School (United States), and Univ. of Kentucky (United States); B. Liu, Rutgers, The State Univ. of New York (United States) and Univ. of Kentucky (United States); X. Qi, D. J. Foran, Robert Wood Johnson Medical School (United States); L. Yang, Univ. of Kentucky (United States)

8314 4X Global pattern analysis and classification of dermoscopic images using textons [8314-178]
M. Sadeghi, T. K. Lee, Simon Fraser Univ. (Canada), BC Cancer Agency (Canada), and The Univ. of British Columbia (Canada); D. McLean, H. Lui, BC Cancer Agency (Canada) and The Univ. of British Columbia (Canada); M. S. Atkins, Simon Fraser Univ. (Canada)

8314 4Y Texture analysis using Minkowski functionals [8314-179]
X. Li, P. R. S. Mendonça, R. Bhotika, GE Global Research (United States)
A novel online Variance Based Instance Selection (VBIS) method for efficient atypicality
detection in chest radiographs [8314-185]
M. Alzubaidi, V. Balasubramanian, CUbiC, Arizona State Univ. (United States); A. Patel, Mayo
Clinic (United States); S. Panchanathan, J. A. Black, Jr., CUbiC, Arizona State Univ. (United
States)

POSTER SESSION: MOTION

Low bandwidth eye tracker for scanning laser ophthalmoscopy [8314-180]
Z. G. Harvey, Flaum Eye Institute, Univ. of Rochester (United States) and Rochester Institute of
Technology (United States); A. Dubra, Medical College of Wisconsin (United States) and
Univ. of Rochester (United States); N. D. Cahill, S. Lopez Alarcon, Rochester Institute of
Technology (United States)

Estimation of trabecular thickness in gray-scale images through granulometric analysis
[8314-181]
R. Moreno, M. Borga, Ó. Smedby, Linköping Univ. (Sweden)

SinoCor: motion correction in SPECT [8314-182]
D. Mitra, D. Eiland, M. Abdallah, Florida Institute of Technology (United States); R. Bouthcko,
G. T. Gullberg, Lawrence Berkeley National Lab. (United States); N. Schechtmann, MIMA,
Melbourne (United States)

Automatic analysis of ciliary beat frequency using optical flow [8314-183]
M. Figl, Medical Univ. Vienna (Austria); M. Lechner, Univ. of Applied Sciences Technikum
Wien (Austria); T. Werther, F. Horak, Medical Univ. Vienna (Austria); J. Hummel, Medical Univ.
Vienna (Austria) and Wilhelminenspital (Austria); W. Birkfellner, Medical Univ. Vienna
(Austria)

Four-dimensional non-rigid cardiac motion estimation [8314-184]
Q. Tang, J. Cammin, S. Srivastava, K. Taguchi, The Johns Hopkins Univ. School of Medicine
(United States)

Author Index