INTRODUCTORY BIOELECTRONICS
FOR ENGINEERS AND PHYSICAL SCIENTISTS

Ronald Pethig
Stewart Smith
School of Engineering
The University of Edinburgh, UK
Contents

About the Authors xiii
Foreword xv
Preface xvii
Acknowledgements xix

1 Basic Chemical and Biochemical Concepts 1
 1.1 Chapter Overview 1
 1.2 Energy and Chemical Reactions 1
 1.2.1 Energy 1
 1.2.2 Covalent Chemical Bonds 2
 1.2.3 Chemical Concentrations 4
 1.2.4 Nonpolar, Polar and Ionic Bonds 6
 1.2.5 Van der Waals Attractions 7
 1.2.6 Chemical Reactions 9
 1.2.7 Free-Energy Change ΔG Associated with Chemical Reactions 10
 1.3 Water and Hydrogen Bonds 15
 1.3.1 Hydrogen Bonds 16
 1.4 Acids, Bases and pH 18
 1.4.1 The Biological Importance of pH 20
 1.4.2 The Henderson-Hasselbalch Equation 21
 1.4.3 Buffers 24
 1.5 Summary of Key Concepts 25
 Problems 26
 References 27
 Further Readings 27

2 Cells and their Basic Building Blocks 29
 2.1 Chapter Overview 29
 2.2 Lipids and Biomembranes 29
 2.2.1 Fatty Acids 30
 2.3 Carbohydrates and Sugars 32
 2.4 Amino Acids, Polypeptides and Proteins 34
 2.4.1 Amino Acids and Peptide Bonds 35
3.8 Probing the Electrical Properties of Cells
 3.8.1 Passive Electrical Response 108
 3.8.2 Active Electrical Response 108
 3.8.3 Membrane Resistance 108
 3.8.4 Membrane Capacitance 109
 3.8.5 Extent of Ion Transfer Associated with the Membrane Resting Potential 110

3.9 Membrane Equilibrium Potentials 111

3.10 Nernst Potential and Nernst Equation 112

3.11 The Equilibrium (Resting) Membrane Potential 114

3.12 Membrane Action Potential 116
 3.12.1 Nerve (Axon) Membrane 117
 3.12.2 Heart Muscle Cell Membrane 118

3.13 Channel Conductance 120
3.14 The Voltage Clamp 121
3.15 Patch-Clamp Recording 122
 3.15.1 Application to Drug Discovery 123

3.16 Electrokinetic Effects 124
 3.16.1 Electrophoresis 124
 3.16.2 Electro-Osmosis 129
 3.16.3 Capillary Electrophoresis 132
 3.16.4 Dielectrophoresis (DEP) 137
 3.16.5 Electrowetting on Dielectric (EWOD) 143

References 145

4 Spectroscopic Techniques 147
 4.1 Chapter Overview 147
 4.2 Introduction 148
 4.2.1 Electronic and Molecular Energy Transitions 148
 4.2.2 Luminescence 150
 4.2.3 Chemiluminescence 150
 4.2.4 Fluorescence and Phosphorescence 150
 4.3 Classes of Spectroscopy 151
 4.3.1 Electronic Spectroscopy 153
 4.3.2 Vibrational Spectroscopy 156
 4.3.3 Rotational Spectroscopy 157
 4.3.4 Raman Spectroscopy 159
 4.3.5 Total Internal Reflection Fluorescence (TIRF) 160
 4.3.6 Nuclear Magnetic Resonance (NMR) Spectroscopy 162
 4.3.7 Electron Spin Resonance (ESR) Spectroscopy 163
 4.3.8 Surface Plasmon Resonance (SPR) 163
 4.3.9 Förster Resonance Energy Transfer (FRET) 164
 4.4 The Beer-Lambert Law 165
 4.4.1 Limitations of the Beer-Lambert Law 168
 4.5 Impedance Spectroscopy 170

Problems 173
7.6 Instrumentation for Electrochemical Sensors

7.6.1 The Electrochemical Cell (Revision) 271
7.6.2 Equivalent Circuit of an Electrochemical Cell 271
7.6.3 Potentiostat Circuits 272
7.6.4 Instrumentation Amplifier 274
7.6.5 Potentiostat Performance and Design Considerations 275
7.6.6 Microelectrodes 277
7.6.7 Low Current Measurement 277

7.7 Impedance Based Biosensors 278

7.7.1 Conductometric Biosensors 278
7.7.2 Electrochemical Impedance Spectroscopy 280
7.7.3 Complex Impedance Plane Plots and Equivalent Circuits 281
7.7.4 Biosensing Applications of EIS 283

7.8 FET Based Biosensors 284

7.8.1 MOSFET Revision 284
7.8.2 The Ion Sensitive Field Effect Transistor 287
7.8.3 ISFET Fabrication 290
7.8.4 ISFET Instrumentation 291
7.8.5 The REFET 292
7.8.6 ISFET Problems 293
7.8.7 Other FET Based Sensors 293

Problems 294
References 296
Further Readings 296

8 Instrumentation for Other Sensor Technologies 297

8.1 Chapter Overview 297
8.2 Temperature Sensors and Instrumentation 298

8.2.1 Temperature Calibration 298
8.2.2 Resistance Temperature Detectors 298
8.2.3 p-n Junction Diode as a Temperature Sensor 301

8.3 Mechanical Sensor Interfaces 304

8.3.1 Piezoresistive Effect 304
8.3.2 Applications of Piezoresistive Sensing 306
8.3.3 Piezoelectric Effect 311

8.3.4 Quartz Crystal Microbalance 311
8.3.5 Surface Acoustic Wave Devices 315
8.3.6 Capacitive Sensors 317
8.3.7 Capacitance Measurement 319
8.3.8 Capacitive Bridge 320
8.3.9 Switched Capacitor Circuits 322

8.4 Optical Biosensor Technology 325

8.4.1 Fluorescence 325
8.4.2 Optical Fibre Sensors 328
8.4.3 Optical Detectors 329
8.4.4 Case Study: Label Free DNA Detection with an Optical Biosensor

8.5 Transducer Technology for Neuroscience and Medicine
8.5.1 The Structure of a Neuron
8.5.2 Measuring and Actuating Neurons
8.5.3 Extracellular Measurements of Neurons
Problems
References
Further Readings

9 Microfluidics: Basic Physics and Concepts
9.1 Chapter Overview
9.2 Liquids and Gases
 9.2.1 Gases
 9.2.2 Liquids
9.3 Fluids Treated as a Continuum
 9.3.1 Density
 9.3.2 Temperature
 9.3.3 Pressure
 9.3.4 Maxwell Distribution of Molecular Speeds
 9.3.5 Viscosity
9.4 Basic Fluidics
 9.4.1 Static Fluid Pressure
 9.4.2 Pascal's Law
 9.4.3 Laplace's Law
9.5 Fluid Dynamics
 9.5.1 Conservation of Mass Principle (Continuity Equation)
 9.5.2 Bernoulli's Equation (Conservation of Energy)
 9.5.3 Poiseuille's Law (Flow Resistance)
 9.5.4 Laminar Flow
 9.5.5 Application of Kirchhoff's Laws (Electrical Analogue of Fluid Flow)
9.6 Navier-Stokes Equations
 9.6.1 Conservation of Mass Equation
 9.6.2 Conservation of Momentum Equation (Navier-Stokes Equation)
 9.6.3 Conservation of Energy Equation
9.7 Continuum versus Molecular Model
 9.7.1 Solving Fluid Conservation Equations
 9.7.2 Molecular Simulations
 9.7.3 Mesoscale Physics
9.8 Diffusion
9.9 Surface Tension
 9.9.1 Surfactants
 9.9.2 Soap Bubble
10 Microfluidics: Dimensional Analysis and Scaling 391
10.1 Chapter Overview 391
10.2 Dimensional Analysis 391
10.2.1 Base and Derived Physical Quantities 393
10.2.2 Buckingham's π-Theorem 394
10.3 Dimensionless Parameters 400
10.3.1 Hydraulic Diameter 401
10.3.2 The Knudsen Number 403
10.3.3 The Peclet Number: Transport by Advection or Diffusion? 406
10.3.4 The Reynolds Number: Laminar or Turbulent Flow? 406
10.3.5 Reynolds Number as a Ratio of Time Scales 408
10.3.6 The Bond Number: How Critical is Surface Tension? 409
10.3.7 Capillary Number: Relative Importance of Viscous and Surface Tension Forces 410
10.3.8 Weber Number: Relative effects of Inertia and Surface Tension 410
10.3.9 Prandtl Number: Relative Thickness of Thermal and Velocity Boundary Layers 411
10.4 Applying Nondimensional Parameters to Practical Flow Problems 411
10.4.1 Channel Filled with Water Vapour 411
10.4.2 Channel Filled with a Dilute Electrolyte at 293 K 411
10.5 Characteristic Time Scales 412
10.5.1 Convective Time Scale 412
10.5.2 Diffusion Time Scale 412
10.5.3 Capillary Time Scale 413
10.5.4 Rayleigh Time Scale 413
10.6 Applying Micro- and Nano-Physics to the Design of Microdevices 413
Problems 415
References 416

Appendix A: SI Prefixes 417

Appendix B: Values of Fundamental Physical Constants 419

Appendix C: Model Answers for Self-study Problems 421

Index 435