Contributor contact details
Foreword
Introduction

Part I Diffusionless transformations

1 Crystallography of martensite transformations in steels
P. M. Kelly, The University of Queensland, Australia
1.1 Introduction
1.2 Martensite transformations in steels
1.3 Phenomenological theory of martensite crystallography (PTMC)
1.4 The post phenomenological theory of martensite crystallography (PTMC) period
1.5 Strain energy – the Eshelby/Christian model and the infinitesimal deformation (ID) approach
1.6 Interfacial dislocation models
1.7 Future trends
1.8 Conclusions
1.9 References

2 Morphology and substructure of martensite in steels
T. Maki, Kyoto University, Japan
2.1 Morphology and crystallographic features of martensite in ferrous alloys
2.2 Morphology and substructure of lath martensite
2.3 Morphology and substructure of lenticular martensite
2.4 Morphology and substructure of thin plate martensite
2.5 Conclusions
2.6 References

© Woodhead Publishing Limited, 2012
Contents

3 Kinetics of martensite transformations in steels 59
G. B. OLSON and Z. D. FEINBERG, Northwestern University, USA

3.1 Introduction 59
3.2 Mechanism and kinetics of martensitic transformation 60
3.3 Mechanically induced transformations 63
3.4 Transformation plasticity constitutive relations and applications 66
3.5 Conclusions 79
3.6 References 80

4 Shape memory in ferrous alloys 83
D. DUNNE, University of Wollongong, Australia

4.1 Introduction 83
4.2 Fe-Pt alloys 89
4.3 Fe-Ni and Fe-Ni-C alloys 93
4.4 Fe-Ni-Co-based alloys 96
4.5 Austenitic stainless steels with low stacking fault energy (SFE) 99
4.6 Fe-Mn-based alloys 100
4.7 Summary 115
4.8 Acknowledgements 118
4.9 References 118

5 Tempering of martensite in carbon steels 126
G. KRAUSS, Colorado School of Mines, USA

5.1 Introduction 126
5.2 Martensitic microstructures prior to tempering heat treatments 127
5.3 Classification of aging and tempering stages: general considerations 130
5.4 Changes in martensitic fine structure due to aging 131
5.5 The stages of tempering 132
5.6 Conclusions 145
5.7 References 145

Part II Phase transformations in high strength steels 151

6 Phase transformations in microalloyed high strength low alloy (HSLA) steels 153
R. C. COCHRANE, University of Leeds, UK

6.1 Introduction to microalloyed high strength low alloy (HSLA) steels 153
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Brief historical review of the development of microalloyed steels</td>
<td>155</td>
</tr>
<tr>
<td>6.3</td>
<td>Solubility of microalloying elements in austenite and ferrite</td>
<td>157</td>
</tr>
<tr>
<td>6.4</td>
<td>Precipitation</td>
<td>161</td>
</tr>
<tr>
<td>6.5</td>
<td>Effects of microalloying on transformation kinetics</td>
<td>177</td>
</tr>
<tr>
<td>6.6</td>
<td>Phase transformations during high strength low alloy (HSLA) steels processing</td>
<td>185</td>
</tr>
<tr>
<td>6.7</td>
<td>Controlled processed ferrite/bainite and acicular ferrite steels</td>
<td>199</td>
</tr>
<tr>
<td>6.8</td>
<td>Conclusions and future trends</td>
<td>205</td>
</tr>
<tr>
<td>6.9</td>
<td>Acknowledgements</td>
<td>207</td>
</tr>
<tr>
<td>6.10</td>
<td>References</td>
<td>207</td>
</tr>
<tr>
<td>7</td>
<td>Phase transformations in transformation induced plasticity (TRIP)-assisted multiphase steels</td>
<td>213</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>7.2</td>
<td>Historical perspectives on the emergence of transformation induced plasticity (TRIP)-assisted multiphase steels</td>
<td>215</td>
</tr>
<tr>
<td>7.3</td>
<td>Influence of parameters of the thermomechanical process on the formation of multiphase microstructures containing retained austenite</td>
<td>223</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion and future trends</td>
<td>242</td>
</tr>
<tr>
<td>7.5</td>
<td>References</td>
<td>243</td>
</tr>
<tr>
<td>8</td>
<td>Phase transformations in quenched and partitioned steels</td>
<td>247</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction to the quenching and partitioning concept</td>
<td>247</td>
</tr>
<tr>
<td>8.2</td>
<td>Microstructure development fundamentals and alloy designs</td>
<td>252</td>
</tr>
<tr>
<td>8.3</td>
<td>Mechanical behavior, potential applications, and implementation status</td>
<td>260</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusions</td>
<td>267</td>
</tr>
<tr>
<td>8.5</td>
<td>References</td>
<td>268</td>
</tr>
<tr>
<td>9</td>
<td>Phase transformations in advanced bainitic steels</td>
<td>271</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>9.2</td>
<td>Design of third generation of advanced high strength steels</td>
<td>273</td>
</tr>
<tr>
<td>9.3</td>
<td>Carbide-free bainitic steels: a material ready for the nanocentury</td>
<td>283</td>
</tr>
</tbody>
</table>
Contents

9.4 Conclusions and future trends 290
9.5 Acknowledgement 291
9.6 References 291

10 Phase transformations in high manganese twinning-induced plasticity (TWIP) steels 295
B. C. De Cooman, Pohang University of Science and Technology, South Korea
10.1 Introduction 295
10.2 Fe-Mn-X alloys 297
10.3 Strain-induced twinning 307
10.4 Twinning-induced plasticity (TWIP) industrialization 327
10.5 Conclusions 327
10.6 Acknowledgements 328
10.7 References 328

11 Phase transformations in maraging steels 332
W. Sha, Queen’s University Belfast, UK, H. Leitner, University of Leoben, Austria, Z. Guo, Sente Software Ltd, UK and W. Xu, ArcelorMittal Global R&D Gent, Belgium
11.1 State of the art of ultra high strength steels 332
11.2 Types of maraging steels 334
11.3 Microstructure and precipitates in maraging steels 339
11.4 Reverted austenite and mechanical properties 342
11.5 Evolution of precipitates and the overall process 346
11.6 Precipitation kinetic theory in Fe-12Ni-6Mn maraging type alloy 349
11.7 Research trends 356
11.8 References 359

Part III Modelling phase transformations 363
12 First principles in modelling phase transformations in steels 365
M. H. F. Sluiter, Delft University of Technology, The Netherlands
12.1 Introduction 365
12.2 *Ab initio* description of phase stability of pure iron 370
12.3 *Ab initio* phase stability of iron carbides 374
12.4 Substitutional alloying elements 377
12.5 *Ab initio* description of diffusivity in bcc Fe 381
12.6 Future trends 384
12.7 References 385

© Woodhead Publishing Limited, 2012
13 Phase field modelling of phase transformations in steels
M. Militzer, The University of British Columbia, Canada

13.1 Introduction
13.2 Phase field methodology
13.3 Austenite formation
13.4 Austenite decomposition
13.5 Future trends
13.6 References

14 Molecular dynamics modeling of martensitic transformations in steels
H. M. Urbassek and L. Sandoval, Universität Kaiserslautern, Germany

14.1 Introduction
14.2 Interatomic interaction potentials
14.3 Martensitic transformations in iron: case studies
14.4 Transformations in ferrous nanosystems
14.5 Conclusions and future trends
14.6 Acknowledgement
14.7 References

15 Neural networks modeling of phase transformations in steels
C. Capdevila, National Centre for Metallurgical Research (CENIM-CSIC), Spain

15.1 Introduction
15.2 Essence of the method
15.3 On the quest of critical temperatures
15.4 Determining microstructural parameters
15.5 Development of continuous cooling transformation (CCT) diagrams
15.6 Conclusions and future trends
15.7 References

Part IV Advanced analytical techniques for studying phase transformations in steels

16 Application of modern transmission electron microscopy (TEM) techniques to the study of phase transformations in steels
D. Boyd and Z. Yao, Queen's University, Canada