TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xix</td>
</tr>
<tr>
<td>Accreditation</td>
<td>xxi</td>
</tr>
<tr>
<td>Forewords</td>
<td>xxii</td>
</tr>
<tr>
<td>Metric Conversion of Some Common Units</td>
<td>xxv</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction to Hydrocarbon Liquid Pipelines

1. Liquid Hydrocarbon Transportation System Scope | 1 |
2. Hydrocarbon Liquid Pipelines | 1 |
3. Liquid Pipeline Transportation Systems | 3 |
4. Types of Transmission Pipelines | 5 |
5. Liquid Petroleum Pipeline Networks | 5 |
6. Single Versus Multiple Products Pipeline | 11 |
6.1 Refined Petroleum Products | 11 |
7. Liquid Pipeline Development History/Chronology | 12 |
7.1 Historical Overview | 12 |
7.2 Codes, Standards and Regulations (Addressing Liquid Pipeline Design, Construction and Operation) | 15 |
7.3 Codes | 15 |
7.4 Regulations | 16 |
8. Major Pipeline Facilities Layout | 22 |
8.1 Pump Station | 22 |
8.2 Metering/Measurement | 22 |
8.3 Valve and Manifolds | 26 |
8.3.1 Valves | 26 |
8.3.2 Manifolds | 27 |
9. General Pipeline Operations | 28 |
References | 29 |
Chapter 2 Hydrocarbon Liquid Properties

2.1 Hydrocarbon Liquids

2.2 Hydrocarbon Liquids Phase Behavior
- 2.2.1 Phase Diagram Determination

2.3 Properties of Petroleum Liquids
- 2.3.1 Mass, Volume, and Density
- 2.3.2 Density and Thermal Expansion
- 2.3.3 Compressibility, Bulk Modulus, and Thermal Expansion
 - 2.3.3.1 Compressibility
 - 2.3.3.2 Bulk Modulus K
 - 2.3.3.3 Thermal Expansion
 - 2.3.3.4 Calculating Bulk Modulus for Various Fluids
 - 2.3.3.5 Other Techniques for Calculating Bulk Modulus

2.4 Specific Gravity and API Gravity
- 2.4.1 Specific Gravities of Blended Products

2.5 Viscosity, Newtonian Versus Non-Newtonian
- 2.5.1 Viscosity and Density Relationship
- 2.5.2 Viscosity of Blended/Diluted Liquids
 - 2.5.2.1 (A) New Volume from Current Volume, Current SG, and Target SG
 - 2.5.2.2 (B) Viscosity Blending Calculation
- 2.5.3 Hydrocarbon Liquids Blending and Volume Shrinkage
- 2.5.4 Viscosity Determination

2.6 Pour Point and Viscosity Relationship
- 2.6.1 Reasons for Pour Point Determination

2.7 Vapor Pressure
- 2.7.1 True Vapor Pressure

2.8 Flash Point

2.9 Hydrocarbon Liquid Specific Heat Capacity

2.10 Thermal Conductivity

2.11 Effect of Hydrocarbon Liquid Properties on Measurement Systems
- 2.11.1 (a) Base Conditions
- 2.11.2 (b) Impact of Phase Change
- 2.11.3 Properties Important to Measurement Systems
- 2.11.4 Factors Affecting Measurement Accuracy

References

Chapter 3 System Hydraulics and Design

3.1 Fundamentals of Liquid Pipeline Hydraulics

3.1.1 Pipeline Flow Equations
- 3.1.1.1 Continuity or Mass Conservation Equation
- 3.1.1.2 Momentum Equation
3.1.3 Steady-State Solutions and Design Equations 70
 3.1.3.1 Solution of Continuity Equation and Volume Correction 71
 3.1.3.2 Solution of Momentum Equation and Pressure Profile Calculation 72
 3.1.3.3 Solution of Energy Equation and Temperature Profile Calculation 75

3.2 Design Process 83
 3.2.1 Codes and Standards 83
 3.2.2 Design Factors 84
 3.2.2.1 Supply and Demand 84
 3.2.2.2 Pipeline Route and Environmental Issues 85
 3.2.2.3 Operating Parameters 86
 3.2.2.4 Pipe Parameters 89
 3.2.2.5 Pumping Parameters 93
 3.2.2.6 Economic Factors 93
 3.2.3 Hydraulic Design Procedure 96

3.3 Liquid Pipeline Design 98
 3.3.1 Crude Oil Pipeline System — Isothermal Flow 99
 3.3.2 Pipeline Configurations 104
 3.3.2.1 Side Stream Delivery 105
 3.3.2.2 Side Stream Injection 108
 3.3.2.3 Pipeline in Series 112
 3.3.2.4 Pipelines in Parallel 114
 3.3.3 Severe Elevation Change — Slack Flow 115
 3.3.4 Severe Weather Conditions 119
 3.3.4.1 Pipeline in a Hot Environment 119
 3.3.4.2 Pipeline in a Cold Environment 119
 3.3.5 Batch Pipeline Hydraulics Design 120
 3.3.6 High Vapor Pressure (HVP) Pipeline Design 122
 3.3.7 Heavy Crude Pipeline Hydraulic Design 129
 3.3.7.1 Determine the Physical Properties under Pipeline Conditions 130
 3.3.7.2 Determine the Pressure and Temperature throughout the Pipeline for the Anticipated Flow Rates 131
 3.3.7.3 Review the Restart after Shutdown 132
 3.3.7.4 Design Facilities 133

3.4 Locating Pump Stations 136
Chapter 4 Pumps and Pump Stations 159

4.1 Introduction 159

4.2 Centrifugal Pumps 160

4.3 Centrifugal Pump Types 161

4.3.1 End Suction Single Stage Pumps 161

4.3.2 Vertical In-Line Single Stage Pumps 161

4.3.3 Horizontal Axially Split Between-Bearing Single-Stage Pumps 161

4.3.4 Horizontal Axially Split Between-Bearing Multi-Stage Pumps 161

4.3.5 Double-Case (Can) Vertically Suspended Volute Pumps 162

4.4 Pump Selection and Sizing 164

4.4.1 Pump Performance 164

4.4.1.1 Pump Performance Curves 165

4.4.2 Service Conditions 165

4.4.3 Net Positive Suction Head (NPSH) 167

4.4.3.1 Net Positive Suction Head Required (NPSHR) 167

4.4.3.2 Net Positive Suction Head Available (NPSHA) 168

4.4.4 Specific Speed 169

4.4.5 Suction Specific Speed 170

4.4.6 Pump Performance Curve Characteristics 171

4.4.7 Centrifugal Pump Power and Efficiency 172

4.4.8 Performance Modifications for Varying Pipeline Applications 172

4.4.9 Cavitation 176

4.4.10 Viscous Hydrocarbon Behavior in Pumps 180

4.4.11 Temperature Rise 181

4.4.12 Minimum Flow 182

4.5 Pump Specification and Purchase 182

4.5.1 Pump Data Sheets 182

4.6 Retrofitting Centrifugal Pumps for Changing Service Conditions 183

4.6.1 Reduced Pipeline Throughput 183

4.6.2 Increased Pipeline Throughput 183

4.6.3 Affinity Laws 184

4.7 Pipeline Hydraulic Requirements 185

4.7.1 System Head Curves and Pump Operating Points 185

4.7.2 Hydraulic Performance in Batched Pipeline Systems with Constant Speed Pumps 188
Chapter 5 Pipeline Operation and Batching 217

5.1 Pipeline Operation 217
 5.1.1 Pipeline System Operation 217
 5.1.2 Concepts of Pipeline Transient Flow 220
 5.1.3 Surge Control 228
 5.1.3.1 Control Devices 230
 5.1.3.2 Pump Unit and Pump Station Operations 231
 5.1.3.3 Special Surge Relief Devices 234
 5.1.4 Example of Pipeline Operation and Surge Control 236
 5.1.4.1 Scheduled Pipeline System Start-Up 238
 5.1.4.2 Scheduled Pipeline System Shutdown 240
 5.1.4.3 Emergency Shutdown of the Pipeline System 242
5.1.4.4 Batch Operation 242
5.1.5 Transient or Surge Analysis 243
5.2 Liquid Batching Transportation 245
5.2.1 Types of Liquid Pipelines 245
5.2.2 Liquid Hydrocarbon Batching 245
5.2.3 Batched Product Pipeline Growth and Technique 247
5.2.4 Products Batching Definitions and Terms 248
5.2.4.1 Batch Sequencing 249
5.2.4.2 Batch Cycle/Slug 250
5.2.4.3 Buffers 250
5.2.4.4 Batching Travel Time 251
5.2.4.5 Batch Interface Marking and Detection 251
5.2.4.6 Batch Injection, Transportation, and Delivery 252
5.2.4.7 Batch Reporting 253
5.2.5 Minimum Batch Size 253
5.2.6 Crude Oil Contamination 254
5.2.6.1 Natural Crude 254
5.2.6.2 Synthetic Crude 254
5.2.6.3 Contamination Level 255
5.2.7 Interface-Volume Estimations 256
5.2.7.1 Batch Calculation and Tracking Example 258
5.2.7.2 Results 259
5.2.8 Batched Products Pipeline Design and Operational Issues 259
5.2.8.1 Design and Operational Issues 260
5.2.8.2 Operation and Control 262
5.2.8.3 Pipeline System Operation/Control 267
5.2.9 Practical Batch Operation in Real-Time 274
5.2.9.1 Batch Launch and Delivery 275
5.2.9.2 Launching and Delivery Operation 276
5.2.9.3 Batch Tracking 276
5.2.10 Multiproduct Pipeline Batch Optimization 278

Addendum to Chapter 5 278
Pipeline System Surge Mitigation Equipment 278
A5.1 Flow Control Valves 279
A5.2 Check Valves 282
A5.3 Relief Valves 286
A5.4 Bursting/Rupture Disc 287
A5.5 Surge Diversion Valve 287
A5.6 Increasing Pipeline Diameter and/or Wall Thickness 288
A5.7 Variable Speed Drives and Soft Starters 288
A5.8 Valve Opening and Closure Times 289
A5.9 Surge Tanks 289
A5.10 Pump Bypass Check Valves 290
A5.11 Applications 290
References 292
Chapter 6 Non-Conventional Hydrocarbon Liquids, Production, and Transportation

6.1 Heavy Oil Technology and Transportation 295
 6.1.1 Background 295

6.2 Heavy Oil Types and Global Distribution 297

6.3 Heavy Oil Properties and Type 299
 6.3.1 Types/Grouping 300
 6.3.2 Oil Viscosity Prediction 301

6.4 Heavy Oils Transportation Technologies 302
 6.4.1 Dilution 303
 6.4.2 Upgrading/Partial Upgrading 304
 6.4.3 Heating/Thermal Upgrading 305
 6.4.4 Water Emulsion 307
 6.4.5 Core Annular Flow (CAF) 308
 6.4.6 Surfactant/Flow Improvers 309
 6.4.7 Slurry Transportation 312
 6.4.8 Comparison of Transportation Techniques 312

6.5 Heavy Crudes Properties for Pipeline Transportation 315
 6.5.1 Grouping of Crudes and Designations 315
 6.5.2 Typical Properties 316

6.6 Heavy Oil Pipeline Transportation Example—Role of Design for Operational Control 317
 6.6.1 Summary on Role of Design 317
 6.6.2 Need for Transient Analysis 318
 6.6.2.1 Information Required for Pipeline Dynamic Assessment 318
 6.6.3 Surge Mitigation Methods 320
 6.6.4 Code Requirement 321
 6.6.5 Case Study—Application to a Heavy Oil Pipeline Projects 322
 6.6.5.1 Fluid Properties 323
 6.6.5.2 Simulation Model and Data 324
 6.6.6 Batch Movement/Transient Simulation Time 327
 6.6.7 Simulations Scenarios and Techniques 328
 6.6.7.1 Time Steps and Pipe Segment “Knot Spacing” 328
 6.6.7.2 Valve Closure and Station Shutdown Timing Sequence 329
 6.6.8 Simulation Results 329
 6.6.8.1 Effect of Valve Closures 329
 6.6.8.2 Effects Due to Pump Stations Shutdown 330
 6.6.8.3 Delivery Restriction (Zero Delivery) 332
 6.6.8.4 Terminal PCV Closure 332
 6.6.8.5 Effect of Minimum Flow Delivery at Maximum Pump Stations Discharge Pressure—Line Packing Conditions 332
 6.6.9 Conclusion 333

Addendum to Chapter 6 333

Heavy Oil Resources and Recovery Techniques 333

A6.1 Heavy Oil Resource Base 333
Table of Contents

A6.2 Bitumen and Heavy Oils Recovery/Extraction Techniques 336
 A6.2.1 Extraction/Recovery Techniques 336
 A6.2.2 Production Techniques Scope 339
 A6.2.3 Recovery Techniques Summary 342
 A6.2.4 Oil Reservoir Classifications 342
References 344

Chapter 7 Liquid Measurement 347

7.1 Introduction 347

7.2 Static Measurement 348
 7.2.1 Tank Calibration 348
 7.2.1.1 Manual Tank Strapping Method (MTSM) 348
 7.2.1.2 Optical Reference Line Method (ORLM) 349
 7.2.1.3 Optical Triangulation Method (OTM) 351
 7.2.1.4 Electro-Optical Distance Ranging Method (EODRM) 353
 7.2.2 Tank Capacity Tables 355
 7.2.3 Liquid Calibration of Tanks 355

7.3 Tank Gauging 355
 7.3.1 Manual Tank Gauging 355
 7.3.2 Servo Tank Gauge 356
 7.3.3 Radar Tank Gauge 357
 7.3.4 Hybrid Tank Measurement Systems 358
 7.3.5 Calculation of Tankage Volumes 359

7.4 Dynamic Measurement 361
 7.4.1 Measurement Systems and Characteristics 361
 7.4.2 Measurement Uncertainty 362
 7.4.2.1 Quality of Liquids 364
 7.4.2.2 Device Degradation 364
 7.4.2.3 Operational Problems 365
 7.4.2.4 Calibration 365
 7.4.2.5 Transducer/Transmitter 365
 7.4.3 Custody Transfer Requirements 365
 7.4.4 Types of Meters 366
 7.4.4.1 Positive Displacement Meters 366
 7.4.4.2 Turbine Meters 368
 7.4.4.3 Ultrasonic Meters 371
 7.4.4.4 Coriolis Meters 373
 7.4.5 Meter Selection 376
 7.4.5.1 Meter Sizing 377
 7.4.5.2 Instrumentation and Accessories 377
 7.4.5.3 Flow Computers 379
 7.4.6 Meter Station Design 380
 7.4.6.1 Meter Station Components 381
Table of Contents

7.4.6.2 Meter Run 382
7.4.6.3 Meter Provers 384
7.4.7 Prover Types 386
7.4.7.1 Tank Provers 386
7.4.7.2 Conventional Pipe Provers 386
7.4.8 Prover Calibration 390
7.5 Volume Accounting System 392
7.5.1 Ticketing Functions 393
7.5.2 Meter Ticket 394
7.5.3 Tank Ticket 395
7.5.4 Volume Tracking 396
7.5.5 Volume Calculation and Balancing 396
7.5.5.1 Volume Calculation 396
7.5.5.2 Meter Factor and Calibration 396
7.5.6 Determination of Liquid Volume 396
7.5.7 General Equations for Determining Liquid Volumes at Base Conditions 397
7.5.8 Volume Balancing 399
Addendum: Standards Relevant to Liquid Petroleum Measurement 400
A7.1 American Petroleum Institute (API)—www.api.org 400
A7.3 American National Standards Institute/American Society of Mechanical Engineers 403
A7.4 International Organization for Standardization (ISO)—www.iso.org 403
References 405

Chapter 8 Hydrocarbon Petroleum Tankage and Terminal Design 407
8.1 Introduction and Overview 407
8.2 History and Reasons for Use 410
8.3 Products Stored and Properties 412
8.4 Types of Petroleum Storage Tanks 415
8.4.1 Definition and Classifications 415
8.4.2 Types 416
8.4.2.1 Fixed Roof Tanks 416
8.4.2.2 Floating Roof Tanks 419
8.4.3 Emission Control in Storage Tanks 428
8.4.3.1 Tank Rim Sealing Systems: Floating Roof Tanks 428
8.4.4 Tank Fittings and Appurtenances 435
8.5 Petroleum Storage Tanks Standards (For Design, Operation, and Protection) 445
8.6 Regulations Affecting Terminal and Storage Facilities 450
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7 Petroleum Storage/Terminal Design</td>
<td>452</td>
</tr>
<tr>
<td>8.7.1 Typical Layout and Spacing</td>
<td>452</td>
</tr>
<tr>
<td>8.7.2 Tank Design (Including Sizing, Materials, and Construction)</td>
<td>456</td>
</tr>
<tr>
<td>8.7.2.1 Design Data</td>
<td>456</td>
</tr>
<tr>
<td>8.7.2.2 Design Calculations</td>
<td>457</td>
</tr>
<tr>
<td>8.7.2.3 Tank Material</td>
<td>465</td>
</tr>
<tr>
<td>8.7.3 Civil Design</td>
<td>465</td>
</tr>
<tr>
<td>8.7.3.1 Tank Foundation</td>
<td>465</td>
</tr>
<tr>
<td>8.7.3.2 Types of Foundations</td>
<td>469</td>
</tr>
<tr>
<td>8.7.3.3 Bund Walls/Dikes</td>
<td>471</td>
</tr>
<tr>
<td>8.7.4 Fabrication and Welding</td>
<td>474</td>
</tr>
<tr>
<td>8.7.4.1 Tank Construction—Fabrication and Welding</td>
<td>474</td>
</tr>
<tr>
<td>8.7.4.2 Welding Techniques</td>
<td>476</td>
</tr>
<tr>
<td>8.7.4.3 Post Weld Heat Treatment of Welded Tanks Structures</td>
<td>482</td>
</tr>
<tr>
<td>8.7.4.4 Construction of Spheres</td>
<td>485</td>
</tr>
<tr>
<td>8.7.5 Mechanical/Piping Components and Instrumentation</td>
<td>485</td>
</tr>
<tr>
<td>8.7.5.1 Mechanical Appurtenances</td>
<td>485</td>
</tr>
<tr>
<td>8.7.5.2 Instrumentation and Controls</td>
<td>486</td>
</tr>
<tr>
<td>8.7.6 Tank Venting Emission Calculations</td>
<td>490</td>
</tr>
<tr>
<td>8.7.6.1 Total Losses from Fixed Roof Storage Tanks</td>
<td>491</td>
</tr>
<tr>
<td>8.7.6.2 Total Losses from Floating Roof Tanks</td>
<td>499</td>
</tr>
<tr>
<td>8.7.7 Operational Issues</td>
<td>500</td>
</tr>
<tr>
<td>8.7.8 Cathodic Protection of Above Ground Hydrocarbon Storage Tanks</td>
<td>503</td>
</tr>
<tr>
<td>8.7.8.1 Definition of Corrosion</td>
<td>503</td>
</tr>
<tr>
<td>8.7.8.2 Corrosive Environment</td>
<td>503</td>
</tr>
<tr>
<td>8.7.8.3 Consequences of Corrosion</td>
<td>503</td>
</tr>
<tr>
<td>8.7.8.4 Types of Corrosion</td>
<td>506</td>
</tr>
<tr>
<td>8.7.8.5 Storage Tank Cathodic Protection</td>
<td>510</td>
</tr>
<tr>
<td>8.7.8.6 Above Ground Storage Tank CP System</td>
<td>517</td>
</tr>
<tr>
<td>8.7.8.7 Typical CP Installation for Above Ground Storage Tanks</td>
<td>519</td>
</tr>
<tr>
<td>8.7.8.8 Applicable CP Standards</td>
<td>519</td>
</tr>
<tr>
<td>8.8 Tank Failures and Emergency Response</td>
<td>520</td>
</tr>
<tr>
<td>8.8.1 Tank Failures</td>
<td>520</td>
</tr>
<tr>
<td>8.8.1.1 Past Accidents</td>
<td>523</td>
</tr>
<tr>
<td>8.8.1.2 Causes of Tank Failure Hazards</td>
<td>524</td>
</tr>
<tr>
<td>8.8.2 Designing Tankage Systems to Minimize Hazards</td>
<td>528</td>
</tr>
<tr>
<td>8.8.2.1 Effective Steps</td>
<td>528</td>
</tr>
<tr>
<td>8.8.3 Design of a Foam System for Fire Protection of Storage Tanks</td>
<td>537</td>
</tr>
<tr>
<td>8.8.3.1 Identifying Flammable Liquid</td>
<td>537</td>
</tr>
<tr>
<td>8.8.3.2 Types of Foam Discharge Outlets</td>
<td>538</td>
</tr>
<tr>
<td>8.8.3.3 Foam System for Fire Protection of Storage Tanks</td>
<td>538</td>
</tr>
<tr>
<td>8.8.3.4 Foam Dam Design for Tanks</td>
<td>543</td>
</tr>
<tr>
<td>8.9 Emergency Response Planning and Facilities</td>
<td>543</td>
</tr>
</tbody>
</table>
Chapter 9 Liquid Pipeline Operation 551

9.1 Supervisory Control and Data Acquisition (SCADA) 551
 9.1.1 Introduction 551
 9.1.2 Pipeline System Monitoring and Control 554
 9.1.3 Control Center and SCADA System 554
 9.1.4 Data Communications 559
 9.1.5 Data Management 562
 9.1.6 Alarms 564
 9.1.7 Human Machine Interface (HMI) and Reporting 566
 9.1.8 Security 571

9.2 Overview of Pipeline Leak Detection System 572
 9.2.1 Introduction 572
 9.2.2 Overview of Leak Detection Techniques 576
 9.2.2.1 Inspection Methods 576
 9.2.2.2 Sensor Methods 577
 9.2.2.3 Computational Pipeline Monitoring (CPM) Methods 579
 9.2.3 Implementation and Operation 584
 9.2.4 Leakage Response 587
 9.2.5 Summary 587

9.3 Drag Reducing Agent (DRA) 587
 9.3.1 Introduction 587
 9.3.1.1 Drag Reduction Mechanism 588
 9.3.1.2 Benefits of Using a DRA 589
 9.3.2 DRA Characteristics and Performance 590
 9.3.3 DRA Operations 590
 9.3.3.1 DRA Facilities 590
 9.3.3.2 DRA Injection 591
 9.3.3.3 DRA Concentration Tracking 593
 9.3.3.4 DRA Limitations on Operation and Design 593
 9.3.4 DRA Correlations 594

9.4 Tank Farm Operation and Volume Measurement 596
 9.4.1 Tank Farm Operation 597
 9.4.1.1 Normal Batch Lifting Sequence at a Product Lifting Tank Farm 597
 9.4.1.2 Operation at the Delivery Terminal 598
Table of Contents

9.4.1.3 Side-Stream Injection 598
9.4.1.4 Side-Stream Delivery 599
9.4.1.5 Break-Out Operation 599
9.4.1.6 Sump System 600
9.4.2 Tank Control 600
9.4.3 Tank Volume Measurement 602
9.4.4 Tank Inventory 602
9.5 Power Cost Control 603
 9.5.1 Power Demand Control 604
 9.5.2 Pump Unit Operating Statistics 604
 9.5.3 Pump Station Monitoring 605
 9.5.4 Power Optimization 606

References 608

Appendix Glossary of Terms and Acronyms 611
References 644

Index 645