Edited by Michael Lämmerhofer and Wolfram Weckwerth

Metabolomics in Practice

Successful Strategies to Generate and Analyze Metabolic Data
Contents

List of Contributors XV
Preface XXIII

1 The Sampling and Sample Preparation Problem in Microbial Metabolomics 1
Walter M. van Gulik, André B. Canelas, Reza M. Seifar, and Joseph J. Heijnen
1.1 Introduction 1
1.2 Microorganisms and Their Properties 1
1.3 Sampling Methods 2
1.3.1 The Need for Rapid Sampling 2
1.3.2 Sampling Systems 3
1.4 Quenching 4
1.4.1 Quenching Procedures and Their Properties 4
1.4.2 Validation of the Quenching Procedure and Minimization of Metabolite Leakage 5
1.4.3 Quenching Procedure for Determination of Intracellular Metabolites in the Presence of Extracellular Abundance 6
1.4.4 Quenching of Bacteria 7
1.5 Metabolite Extraction 9
1.5.1 Extraction Methods and Their Properties 9
1.5.2 Validation of Extraction Methods for Yeast Metabolomics 9
1.6 Application of 13C-Labeled Internal Standards 13
1.7 Conclusions 17
References 18

2 Tandem Mass Spectrometry Hyphenated with HPLC and UHPLC for Targeted Metabolomics 21
Gérard Hopfgartner and Emmanuel Varesio
2.1 Introduction 21
2.2 LC-MS-Based Targeted Metabolomics 22
2.3 Liquid Chromatography 22
2.4 Mass Spectrometry 27
2.4.1 Ionization Techniques 27
2.4.2 Mass Analyzers 28
2.5 Sample Preparation 30
2.6 Relative and Absolute Quantification 31
2.7 Applications 32
2.8 Synopsis 34

References 35

3 Uncertainty of Measurement in Quantitative Metabolomics 39
Raffaele Guerrasio, Christina Haberhauer-Troyer, Stefan Neubauer,
Kristaps Klavins, Madeleine Werneth, Gunda Koellensperger, and
Stephen Hann
3.1 Introduction 39
3.1.1 MS-Based Techniques in Metabolomics 39
3.1.2 Uncertainty of Measurement in Quantitative Analysis 41
3.1.2.1 Definition 41
3.1.2.2 Uncertainty Calculation According to the Bottom-Up Approach 42
3.2 Uncertainties of Quantitative MS Experiments 48
3.2.1 Uncertainties in Sample Preparation 48
3.2.1.1 Sampling and Sample Preparation in Metabolite Profiling in
Fermentations 49
3.2.1.2 Calculation of Sample Preparation Uncertainty for Intracellular
Metabolite Quantitation in Yeast: A Practical Example 53
3.2.1.3 LC-MS 59
3.2.2 Uncertainty of Mass Spectrometric Assays (LC-MS and GC-MS
Measurements) 61
3.2.2.1 GC-MS 61
3.2.2.2 Calculation of Uncertainty for LC-MS Measurements of Cell Extracts:
A Practical Example 63
3.3 Concluding Remarks 66
Abbreviations 66
Acknowledgment 67
References 67

4 Gas Chromatography and Comprehensive Two-Dimensional Gas
Chromatography Hyphenated with Mass Spectrometry for Targeted
and Nontargeted Metabolomics 69
Song Yang, Jamin C. Hoggard, Mary E. Lidstrom, and
Robert E. Synovec
4.1 Introduction and Scope 69
4.2 Sample Preparation for GC-Based Metabolite Profiling 71
4.3 GC–MS and GC × GC–TOFMS Instrumentation for
Metabolomics 74
4.4 Data Analysis Strategies and Software 82
4.5 Illustrative Examples and Concluding Remarks 88
References 89

5 LC-MS-Based Nontargeted Metabolomics 93
Georgios A. Theodoridis, Helen G. Gika, and Ian D. Wilson
5.1 Introduction 93
5.2 LC-MS-Based Untargeted Metabolomics 94
5.2.1 LC Issues 94
5.2.2 Mass Spectrometry 97
5.3 Study Design 98
5.4 Sample Preparation 100
5.5 Analytical Strategies 103
5.6 Data Analysis 104
5.7 Metabolite Identification 107
5.8 Applications 109
5.9 Synopsis 112
References 113

6 The Potential of Ultrahigh Resolution MS (FTICR-MS) in Metabolomics 117
Franco Moritz, Sara Forcisi, Mourad Harir, Basem Kanawati, Marianna Lucio, Dimitrios Tziotis, and Philippe Schmitt-Kopplin
6.1 Introduction 117
6.2 Metabolomics Technologies 118
6.3 Principles of FTICR-MS 121
6.3.1 Natural Ion Movement Inside an ICR Cell Subjected to Magnetic and Electric Fields 121
6.3.2 Applied Physical Techniques in FTICR-MS 123
6.3.3 Practical Advantages of FTICR-MS 124
6.4 Proceeding in Metabolomics 126
6.4.1 Network Analysis and NetCalc Composition Assignment 126
6.4.2 Statistics on FTICR-MS Datasets 127
6.5 Application Example in Metabolomics Using FTICR-MS Exhaled Breath Condensate 128
6.5.1 The Experiment 128
6.5.2 FT-ICR/MS Measurement 129
6.5.3 Data Preprocessing 129
6.5.4 C–H–N–O–S–P Formula Annotation 130
6.5.5 Statistical Analysis 130
6.5.5.1 Statistical Preprocessing 130
6.5.6 Synthesis of Biochemical Mass Difference Networking and Statistical Results 131
6.6 Conclusion and Remarks 134
References 134
Contents

7 The Art and Practice of Lipidomics

Koen Sandra, Ruben t'Kindt, Lucie Jorge, and Pat Sandra

- Abbreviations 137

7.1 Introduction 139

7.2 Lipid Diversity 140

7.3 Tackling the Lipidome: State-of-the-Art 141

7.4 LC-MS-Based Lipidomics 146

7.4.1 Lipid Extraction 146

7.4.1.1 Biological Fluids and Cellular Material 146

7.4.1.2 Skin (Stratum Corneum) 148

7.4.1.3 Solid-Phase Extraction (SPE) 148

7.4.2 LC-MS(/MS) 151

7.4.2.1 Retention Time Characteristics 151

7.4.2.2 Ionization Characteristics 155

7.4.2.3 Identification of Lipids 156

7.4.3 Data Processing and Analysis 161

7.5 GC-MS-Based Lipidomics 165

7.5.1 Sample Preparation 165

7.5.2 GC–MS 166

7.5.3 Data Processing and Analysis 170

7.6 Conclusion 172

8 The Role of CE–MS in Metabolomics

Rawi Ramautar, Govert W. Somsen, and Gerhardus J. de Jong

- Abbreviations 177

8.1 Introduction 177

8.2 CE–MS 179

8.2.1 CE Separation Conditions 179

8.2.2 CE–MS Coupling 180

8.2.2.1 Interfacing 180

8.2.2.2 Mass Analyzers 184

8.3 Sample Pretreatment 185

8.4 Data Analysis 187

8.5 Applications 190

8.5.1 Targeted Approaches 190

8.5.2 Nontargeted Approaches 202

8.6 Conclusions and Perspectives 203

9 NMR-Based Metabolomics Analysis

Andrea Lubbe, Kashif Ali, Robert Verpoorte, and Young Hae Choi

- Abbreviations 209

9.1 Introduction 209

9.2 Platforms for Metabolomics 210

9.2.1 Mass Spectrometry (MS) 210
Contents

10.3.1 Microchip Capillary Electrophoresis 243
 10.3.1.1 MCE Systems 243
 10.3.1.2 Sample Injection 244
 10.3.1.3 Electrophoretic Separations 244
10.3.2 Analyte Detection 245
 10.3.2.1 Optical Detection 245
 10.3.2.2 Electrochemical Detection 246
10.4 Microfluidics for Cellular Analysis 247
 10.4.1 Requirements for Single Cell Metabolomics 247
 10.4.2 Types of Microfluidic Instrumentation 248
 10.4.3 Biological Questions 249
 10.4.3.1 Monitoring Metabolic Response to Stimulation and Cell-to-Cell Signaling 249
 10.4.3.2 Pharmacokinetics/Pharmacodynamics 252
 10.4.3.3 Clinical Diagnostics 254
10.5 A Look Forward 254
References 256

11 Data Processing in Metabolomics 261

Age K. Smilde, Margriet M.W.B. Hendriks, Johan A. Westerhuis, and Huub C.J. Hoefsloot

11.1 Introduction and Scope 261
11.2 Characteristics of Metabolomics Data 261
 11.2.1 Correlation Structure of Metabolomics Data 261
 11.2.2 Informative versus Noninformative Variation 262
 11.2.3 Low Samples-to-Variables Ratio 263
 11.2.4 Measurement Error 263
 11.2.5 Dynamics 263
 11.2.6 Nonlinear Relations 264
 11.3 Types of Biological Questions Asked 264
 11.3.1 Methods Should Follow the Questions 264
 11.3.2 Biomarkers 264
 11.3.3 Treatment Effects 264
 11.3.4 Networks and Mechanistic Insight 265
11.4 Validation 265
 11.4.1 Several Levels of Validation 265
 11.4.2 Curse of Dimensionality 266
 11.4.3 Cross-Validation and Permutations 267
11.5 Overview of Methods 272
 11.5.1 Exploratory Analysis 272
 11.5.2 ANOVA and Other Univariate Methods 273
 11.5.3 Advanced Exploratory Analysis 275
 11.5.4 Regression Methods 277
 11.5.5 Discriminant Analysis 280
 11.5.6 Multilevel Approaches 281
12 Metabolic Flux Analysis 285
Christoph Wittmann and Jean-Charles Portais

12.1 Introduction 285
12.2 Prerequisites for Flux Studies 287
12.2.1 Network Topology and Cellular Composition 287
12.2.2 Network Formulation and Condensation 287
12.2.3 Metabolic and Isotopic Steady State 288
12.2.4 Definition of Isotope Labeling Patterns 289
12.3 Stoichiometric Flux Analysis 290
12.4 Labeling Studies Using Isotopes 292
12.4.1 Radiolabeled Isotopes 293
12.4.2 Stable Isotopes 295
12.5 State-of-Art 13C Flux Analysis 296
12.5.1 Modeling of Carbon Transitions 298
12.5.2 Experimental Design 299
12.5.3 Flux Calculation and Statistical Evaluation of Flux Data 300
12.5.4 Labeling Analysis by Mass Spectrometry 301
12.5.5 Labeling Analysis by Nuclear Magnetic Resonance Spectroscopy 302
12.6 Application of Metabolic Flux Analysis 303
12.6.1 Improvement of Industrial Production Strains 303
12.6.2 Integration into Systems Biology Approaches 306
12.7 Recent Advances in the Field 307
12.7.1 High-Throughput Flux Screening 307
12.7.2 Flux Dynamics 307
12.8 Concluding Remarks 308
Acknowledgments 308
References 308

13 Metabolomics: Application in Plant Sciences 313
Gaëtan Glauser, Julien Boccard, Jean-Luc Wolfender, and Serge Rudaz

13.1 Introduction 313
13.2 Sample Preparation 314
13.2.1 Culture and Harvesting 314
13.2.2 Storage and Drying 315
13.2.3 Extraction 315
13.3 Analytical Methods 316
13.3.1 NMR-Based Methods 317
13.3.1.1 Direct NMR Fingerprinting 317
13.3.1.2 Applications 318
13.3.1.3 Hyphenation of NMR to Separating Techniques 323
13.3.1.4 Future Trends 323
13.3.2 MS-Based Methods 323
Contents

13.3.2.1 Direct MS Methods 324
13.3.2.2 Hyphenation of MS to Separating Techniques 324
13.3.2.3 Applications 326
13.3.3 Combined Approaches 329
13.4 Metabolite Identification 330
13.4.1 Interpreting Mass Spectra 330
13.4.2 Databases 332
13.5 Structural Elucidation of Novel Metabolites and Validation of Model 334
13.6 Conclusion and Perspectives 336
Acknowledgments 337
References 337

14 Metabolomics and Its Role in the Study of Mammalian Systems 345
Warwick B. Dunn, Mamas Mamas, and Alexander Heazell
14.1 Introduction – From Early Beginnings 345
14.2 Hypothesis Generation or Hypothesis-Testing Studies 347
14.3 Untargeted, Semi-Targeted, and Targeted Analytical Experiments 348
14.4 Study and Experimental Design 350
14.5 Sample Types 355
14.6 Quality Assurance and Quality Control 360
14.7 Metabolite Annotation and Identification 365
14.8 Applications 369
14.8.1 Pregnancy Complications 369
14.8.2 Cardiovascular Diseases 371
Acknowledgments 373
References 373

15 Metabolomics in Biotechnology (Microbial Metabolomics) 379
Marco Oldiges, Stephan Noack, and Nicole Paczia
15.1 Introduction 379
15.2 Analytical Methods Applied for Microbial Metabolomics 382
15.3 Custom-Made Separation for Microbial Metabolomics 384
15.4 Microbial Metabolomics with Higher Throughput 385
15.5 Application of Microbial Metabolomics 386
15.6 Conclusion 388
References 388

16 Nutritional Metabolomics 393
Hannelore Daniel
16.1 Introduction 393
16.2 The Metabolome of Human Plasma and Urine: General Considerations 393
16.2.1 The Plasma Metabolome 394