Functional materials for sustainable energy applications

Edited by
Contents

Contributor contact details xiii
Woodhead Publishing Series in Energy xix
Preface xxv

Part I Functional materials for solar power

1 Silicon-based photovoltaic solar cells 3
N. E. B. Cowern, Newcastle University, UK

1.1 Introduction 3
1.2 Polysilicon production 5
1.3 Crystallisation and wafering 8
1.4 Solar cells: materials issues and cell architectures 14
1.5 Conclusions 18
1.6 References 19

2 Photovoltaic (PV) thin-films for solar cells 22
S. J. C. Irvine, Glyndwr University, UK

2.1 Introduction 22
2.2 Amorphous silicon thin-film photovoltaic (PV) 27
2.3 Cadmium telluride thin-film PV 29
2.4 Copper indium diselenide thin-film PV 33
2.5 Materials sustainability 35
2.6 Future trends 37
2.7 Sources of further information and advice 38
2.8 References 39

3 Rapid, low-temperature processing of dye-sensitized solar cells 42
P. J. Holliman, A. Connell and M. L. Davies, Bangor University, UK and M. J. Carnie and T. M. Watson, Swansea University, UK
3.1	Introduction to dye-sensitized solar cells (DSCs)	42
3.2	Manufacturing issues	44
3.3	Sensitization	47
3.4	Electrodes	50
3.5	Electrolyte	53
3.6	Quality control (QC)/lifetime testing	56
3.7	Conclusions and future trends	59
3.8	Acknowledgements	60
3.9	References	60
4	Thermophotovoltaic (TPV) devices: introduction and modelling	67
R. J. Nicholas and R. S. Tuley, University of Oxford, UK		
4.1	Introduction to thermophotovoltaics (TPVs)	67
4.2	Practical TPV cell performance	71
4.3	Modelling TPV cells	73
4.4	Tandem TPV cells	82
4.5	Conclusions	83
4.6	References	84
5	Photoelectrochemical cells for hydrogen generation	91
K. G. U. Wijayantha, Loughborough University, UK		
5.1	Introduction	91
5.2	Photoelectrochemical cells: principles and energetics	92
5.3	Photoelectrochemical cell configurations and efficiency considerations	99
5.4	Semiconductor photoanodes: material challenges	103
5.5	Semiconductor photocathodes: material challenges	111
5.6	Advances in photochemical cell materials and design	113
5.7	Interfacial reaction kinetics	118
5.8	Future trends	127
5.9	Acknowledgements	132
5.10	References	133
5.11	Appendix: abbreviations	143

Part II Functional materials for hydrogen production and storage

<p>| 6 | Reversible solid oxide electrolytic cells for large-scale energy storage: challenges and opportunities | 149 |
| B. Yildiz, Massachusetts Institute of Technology, USA |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>249</td>
</tr>
<tr>
<td>9.2 Thermodynamics of fuel cell operation and the effect of fuel on performance</td>
<td>252</td>
</tr>
<tr>
<td>9.3 Hydrocarbon fuels and fuel processing</td>
<td>256</td>
</tr>
<tr>
<td>9.4 Methanol</td>
<td>262</td>
</tr>
<tr>
<td>9.5 Other fuels</td>
<td>265</td>
</tr>
<tr>
<td>9.6 Deleterious effects of fuels on fuel cell performance</td>
<td>267</td>
</tr>
<tr>
<td>9.7 Conclusions</td>
<td>274</td>
</tr>
<tr>
<td>9.8 Acknowledgements</td>
<td>274</td>
</tr>
<tr>
<td>9.9 References</td>
<td>274</td>
</tr>
<tr>
<td>10 Membrane electrode assemblies for polymer electrolyte membrane fuel cells</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>279</td>
</tr>
<tr>
<td>10.2 Requirements for membrane electrode assemblies (MEAs)</td>
<td>280</td>
</tr>
<tr>
<td>10.3 Porous backing layer materials</td>
<td>282</td>
</tr>
<tr>
<td>10.4 Membrane materials</td>
<td>290</td>
</tr>
<tr>
<td>10.5 MEA electrode catalyst layer</td>
<td>299</td>
</tr>
<tr>
<td>10.6 MEA performance</td>
<td>303</td>
</tr>
<tr>
<td>10.7 Conclusions</td>
<td>309</td>
</tr>
<tr>
<td>10.8 References</td>
<td>310</td>
</tr>
<tr>
<td>11 Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel cells (DMFCs)</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>312</td>
</tr>
<tr>
<td>11.2 Historical development and technical challenges</td>
<td>316</td>
</tr>
<tr>
<td>11.3 Methanol oxidation reaction catalysts</td>
<td>319</td>
</tr>
<tr>
<td>11.4 Oxygen reduction reaction (ORR) catalysts</td>
<td>324</td>
</tr>
<tr>
<td>11.5 Proton exchange membranes</td>
<td>331</td>
</tr>
<tr>
<td>11.6 Membrane electrode assembly (MEA)</td>
<td>343</td>
</tr>
</tbody>
</table>
Contents

11.7 Conclusions and future trends | 353
11.8 Acknowledgements | 358
11.9 References | 358

12 Electrolytes and ion conductors for solid oxide fuel cells (SOFCs)
N. Preux, A. Rolle and R.N. Vannier, Ecole Nationale Supérieure de Chimie de Lille, France

12.1 Introduction | 370
12.2 Oxide ion conduction | 371
12.3 Electrolyte materials for solid oxide fuel cells (SOFCs) | 374
12.4 Preparation and characterization of electrolyte materials for SOFCs | 385
12.5 Conclusions | 393
12.6 References | 394

13 Novel cathodes for solid oxide fuel cells
J.-C. Grenier, J.-M. Bassat and F. Mauvy, ICMCB-CNRS, Université de Bordeaux, France

13.1 Introduction | 402
13.2 The oxygen reduction reaction in solid oxide fuel cells (SOFCs) and implications for cathode materials | 404
13.3 Conventional cathode materials: perovskite-type oxides | 409
13.4 Innovative cathode materials: structural aspects of 2D non-stoichiometric perovskite-related oxides | 412
13.5 Comparative transport properties and electrochemical performances of 2D non-stoichiometric oxides | 422
13.6 Ln$_2$NiO$_{4+δ}$ oxides: innovative and flexible materials for oxygen electrodes of protonic ceramic fuel cells (PCFCs) and electrolyzers | 429
13.7 Prospective conclusions | 436
13.8 References | 437

14 Novel anode materials for solid oxide fuel cells
S. W. Tao, P. I. Cowin and R. Lan, University of Strathclyde, UK

14.1 Introduction | 445
14.2 Requirements for solid oxide fuel cell anode materials | 446
14.3 Cermet solid oxide fuel cell anode materials | 451
14.4 Perovskite-structured solid oxide fuel cell anode materials | 454

© Woodhead Publishing Limited, 2012
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>Other oxide anode materials</td>
<td>463</td>
</tr>
<tr>
<td>14.6</td>
<td>Non-oxide anode materials</td>
<td>465</td>
</tr>
<tr>
<td>14.7</td>
<td>Poisoning of solid oxide fuel cell anode materials</td>
<td>466</td>
</tr>
<tr>
<td>14.8</td>
<td>Conclusions and future trends</td>
<td>468</td>
</tr>
<tr>
<td>14.9</td>
<td>References</td>
<td>469</td>
</tr>
<tr>
<td>15</td>
<td>Thin-film solid oxide fuel cell (SOFC) materials</td>
<td>478</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>478</td>
</tr>
<tr>
<td>15.2</td>
<td>Electrolytes</td>
<td>480</td>
</tr>
<tr>
<td>15.3</td>
<td>Anode materials</td>
<td>486</td>
</tr>
<tr>
<td>15.4</td>
<td>Cathode materials</td>
<td>488</td>
</tr>
<tr>
<td>15.5</td>
<td>Device structures</td>
<td>497</td>
</tr>
<tr>
<td>15.6</td>
<td>Conclusions</td>
<td>501</td>
</tr>
<tr>
<td>15.7</td>
<td>Acknowledgments</td>
<td>503</td>
</tr>
<tr>
<td>15.8</td>
<td>References</td>
<td>503</td>
</tr>
<tr>
<td>15.9</td>
<td>Appendix: glossary</td>
<td>513</td>
</tr>
<tr>
<td>16</td>
<td>Proton conductors for solid oxide fuel cells (SOFCs)</td>
<td>515</td>
</tr>
<tr>
<td>16.1</td>
<td>The proton conduction mechanism in high temperature proton conductor (HTPC) electrolytes</td>
<td>515</td>
</tr>
<tr>
<td>16.2</td>
<td>Reaction processes at the electrode/electrolyte when using HTPC electrolytes</td>
<td>520</td>
</tr>
<tr>
<td>16.3</td>
<td>HTPC: the state of the art and challenges</td>
<td>522</td>
</tr>
<tr>
<td>16.4</td>
<td>Electrodes for HTPC electrolytes: the state of the art and challenges</td>
<td>526</td>
</tr>
<tr>
<td>16.5</td>
<td>Solid oxide fuel cells (SOFCs) based on HTPC electrolytes: current status and future perspectives</td>
<td>530</td>
</tr>
<tr>
<td>16.6</td>
<td>Conclusions</td>
<td>531</td>
</tr>
<tr>
<td>16.7</td>
<td>References</td>
<td>532</td>
</tr>
<tr>
<td>Part IV</td>
<td>Functional materials for demand reduction and energy storage</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Materials and techniques for energy harvesting</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>M. E. KIZIROGLOU and E. M. YEATMAN, Imperial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College London, UK</td>
<td></td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2012
Contents

17.1 Introduction 541
17.2 Theory of motion energy harvesting 542
17.3 Piezoelectric harvesting 546
17.4 Electrostatic harvesting 551
17.5 Thermoelectric harvesting 555
17.6 Electromagnetic energy harvesting from motion 560
17.7 Suspension materials for motion energy harvesting 563
17.8 References 566

18 Lithium batteries: current technologies and future trends 573
B. Scrosati and J. Hassoun, Sapienza University of Rome, Italy
18.1 Introduction 573
18.2 Lithium-ion batteries 579
18.3 Safety of lithium-ion batteries 581
18.4 Energy density of lithium-ion batteries 583
18.5 Future trends 589
18.6 Acknowledgements 596
18.7 References 596

19 Rare-earth magnets: properties, processing and applications 600
I. R. Harris, University of Birmingham, UK and G. W. Jewell, University of Sheffield, UK
19.1 Introduction 600
19.2 Properties of permanent magnetic materials 601
19.3 Improving the properties of permanent magnetic materials 608
19.4 Processing of permanent magnets 615
19.5 Properties of commercially manufactured permanent magnets 627
19.6 Applications of permanent magnet materials 633
19.7 References 638

Part V Appendix

Appendix: Atomic-scale computer simulation of functional materials: methodologies and applications 643
A. Chroneos, Imperial College London, UK and University of Cambridge, UK and C. L. Bishop, D. C. Parfitt and R. W. Grimes, Imperial College London, UK
A.1 Introduction 643

© Woodhead Publishing Limited, 2012
Contents

A.2 Methodological approaches 643
A.3 Application of methodologies 652
A.4 Future trends 658
A.5 References 658

Index 663