1. Basic Information about Tomatoes and the Tomato Group
Ana Caicedo and Iris Peralta

1.1 Introduction 2
1.2 Economic and Nutritional Importance of Tomato 2
 1.2.1 Economic Importance 2
 1.2.2 Nutritional Composition 3
1.3 Academic Importance of Tomato and its Wild Relatives 5
 1.3.1 Tomato as a Model Species 5
 1.3.1.1 The Genetic Basis of Quantitative Traits 6
 1.3.1.2 Fruit Development 6
 1.3.2 The Tomato Clade as a Model System 7
 1.3.2.1 Plant Defense 7
 1.3.2.2 Mating System and Speciation 8
 1.3.2.3 Adaptation and Divergence 8
1.4 Taxonomy and Evolution 9
 1.4.1 Taxonomic Position and Phylogenetic Relationships 9
1.5 Botanical Descriptions 13
 1.5.1 Morphology 13
 1.5.2 Ploidy Levels, Genome Size and Karyotype 16
1.6 Ecology and Biodiversity of the Tomato Clade 17
 1.6.1 Distribution and Habitats 17
 1.6.2 Mating System Evolution in the Tomato Clade 18
 1.6.2.1 Mating System Diversity 18
 1.6.2.2 The Genetic Basis of Mating System Diversity 19
 1.6.3 Genetic Diversity in Wild Tomatoes 20
 1.6.3.1 Genetic Diversity and Mating System 20
 1.6.3.2 Genetic Diversity and Geography in SI Species 21
 1.6.3.3 Genetic Diversity and Geography in SC Species 22
3. Diversity within Cultivated Tomato 74
 Esther van der Knaap, Claire Anderson and Gustavo Rodriguez
 3.1 Introduction 74
 3.2 Phenotypic Analysis of Tomato Fruit 77
 3.3 The Effect of the Tomato Shape Genes on Fruit Morphology 80
 3.4 Genotype-Based Diversity Analysis 82
 3.5 Genetic Diversity within Cultivated Tomato Germplasm 83
 3.6 Future Prospects 87
 Acknowledgements 88
 References 88

4. Molecular Markers, Genetic Maps and Association Studies in Tomato 92
 Martin W. Ganal
 4.1 Introduction 92
 4.2 Molecular Markers for Tomato Genome Mapping and Marker/Trait Association Studies 94
 4.2.1 RFLPs and RFLP-based PCR Markers 95
 4.2.2 PCR-based Anonymous Markers 95
 4.2.3 Microsatellite or SSR Markers 96
 4.2.4 Single Nucleotide Polymorphism (SNP) Markers 97
 4.3 Genetic Maps and Available Markers 97
 4.4 Population Structure, Linkage Disequilibrium and Association of Markers and Traits 98
 4.4.1 Population Structure in Tomato 98
 4.4.2 Linkage Disequilibrium 99
 4.4.3 First Efforts towards Association Mapping in Tomato 100
 4.4.4 Candidate Gene Analysis 100
 4.5 Future Developments 101
 4.5.1 Requirements on Markers for Marker/Trait Associations 101
 4.5.2 Large Scale SNP Identification for Marker/Trait Associations 102
 4.5.3 Genome-wide Association Studies 103
 4.5.4 The Future—The Tomato Genome Sequence, Large Scale Phenotyping and Association Studies 104
 Acknowledgements 105
 References 105

5. Mapping and Tagging of Simply Inherited Traits 109
 Ilan Levin and Arthur A. Schaffer
 5.1 Introduction 110
6.9.3.3 Salt Tolerance 189
6.9.4 Fruit Yield 191
6.9.5 Fruit Quality 192
6.9.5.1 Fruit Weight 193
6.9.5.2 Fruit Shape 194
6.9.5.3 Fruit Color 196
6.9.5.4 Fruit Firmness 197
6.9.5.5 Primary Metabolic Traits 198
6.9.5.6 Sugar and Acid Content 199
6.9.5.7 Nutritional and Antioxidant Compounds 201
6.9.5.8 Volatile Compounds 203
6.9.5.9 Sensory Traits 205
6.9.6 Flowering and Ripening Time 206
6.9.7 Flower Morphology and Reproductive Barriers 207
6.9.8 Leaf, Sepal, and Petal Morphology 209
6.9.9 Seed Weight 210
6.10 Conclusions and Future Prospects 211
Acknowledgments 212
References 213

7. Molecular Breeding 228
Emidio Sabatini, Massimiliano Beretta, Tea Sala,
Nazareno Acciarri, Justyna Mile and Nicola Pecchioni

7.1 Introduction 229
7.2 Germplasm Characterization and Exploitation 230
7.2.1 Pre-breeding 231
7.2.2 Testing for Distinctness, Uniformity and Stability (DUS) 237
7.2.3 Hybrid Purity Testing 238
7.3 Marker-Assisted Trait Introgression 239
7.3.1 Gene and QTL Introgression 239
7.3.2 Gene Pyramiding 261
7.3.3 Genetic Ideotype Breeding 265
7.4 Advantages, Limitations and Prospects of MAS 266
7.4.1 Advantages 267
7.4.2 Limitations and Solutions 268
7.4.2.1 Unavailability of Closely-linked Markers for Many Traits 270
7.4.3 Prospects for MAS 271
7.4.3.1 From “MAS” to “GAS” 272
7.5 Transgenic Breeding 275
7.5.1 Traits and Objectives 279
7.5.1.1 Sugars 279
7.5.1.2 Carotenoids 280
10. The Tomato Genome Sequencing Project

Lukas A. Mueller

10.1 Introduction

10.2 Sequencing Strategy
 10.2.1 BAC by BAC Approach
 10.2.2 Whole Genome Shotgun

10.3 Genome Annotation by ITAG

10.4 Conclusion

Acknowledgments

References

11. Comparative Genome Sequencing of Tomato and Potato: Methods and Analysis

Sanwen Huang and Zhong-hua Zhang

11.1 Introduction

11.2 A Pipeline for the Comparative Sequencing of Tomato and Potato Genomes

11.3 Advantages of Comparative Genome Sequencing
 11.3.1 Improving the Physical Maps
 11.3.2 Selecting Additional Seed BACs
 11.3.3 Benefits to BAC Finishing

11.4 Comparative Analysis of Syntenic Clones Obtained from Comparative Sequencing
 11.4.1 Characterization of Syntenic Sequences
 11.4.2 Colinearity between Tomato and Potato
 11.4.3 Content and Distribution of Repetitive Elements
 11.4.4 Inserted or Deleted (indel) Genes within Syntenic Regions
 11.4.5 Divergence of Synteny Length between Tomato and Potato

11.5 Limitations and Opportunities

References

12. Developments in Tomato Transcriptomics

Antonio J. Matas, Zhangjun Fei, James J. Giovannoni and Jocelyn K.C. Rose

12.1 Introduction

12.2 Transcriptomics Tools Developed
 12.2.1 Microarrays
 12.2.2 SAGE and Related Technologies
 12.2.3 Massive Parallel Signature Sequencing

References
12.3 Advances in Sequencing Technologies
 12.3.1 454 Genome Sequencer FLX
 12.3.2 Illumina
 12.3.3 ABI Solid Sequencing
 12.3.4 Third Generation and other Sequencing Technologies
 12.3.5 RNA-Seq

12.4 Bioinformatic Challenges and Data Analysis

12.5 Use of Related Species Resources

12.6 Application of Functional Genomics in Genomics-Assisted Breeding

12.7 Summary

Acknowledgements

References

13. Proteomics and Metabolomics

Mireille Faurobert, Yoko Iijima and Koh Aoki

13.1 Introduction

13.2 Tomato Proteomics: Techniques, Applications, and QTL Analyses
 13.2.1 Proteomics Methods
 13.2.1.1 Protein Extraction
 13.2.1.2 Traditional 2DE-based Methods
 13.2.1.3 Mass Spectrometry
 13.2.1.4 Shotgun Proteomics
 13.2.1.5 Analysis of Post-translational Modifications
 13.2.1.6 Protein Complexes

 13.2.2 Application of Proteomics to Functional Studies
 13.2.2.1 Fruit Development and Ripening
 13.2.2.2 Abiotic Stress
 13.2.2.3 Biotic Stress

 13.2.3 Proteomics and QTL Mapping
 13.2.3.1 Pathogen Resistance
 13.2.3.2 Fruit Quality Traits

13.3 Tomato Metabolomics: Techniques, Applications, and QTL Analyses
 13.3.1 Metabolomics Tools
 13.3.1.1 Metabolite Extraction
 13.3.1.2 GC-MS
 13.3.1.3 LC-MS
 13.3.1.4 CE-MS
 13.3.1.5 NMR
 13.3.1.6 Analytical Strategies
13.3.2 Application of Metabolomics to Functional Studies 416

13.3.2.1 Comprehensive Analysis of Tomato Fruit Metabolites 416

13.3.2.2 Tissue-dependent Accumulation of Metabolites 416

13.3.2.3 Metabolome Analysis in Transgenic Tomato Plants 417

13.3.3 Metabolomics and QTL Mapping 418

13.3.3.1 Metabolic Profiling of Wild Species 418

13.3.3.2 Metabolic Profiling of ILs between S. pennellii and S. lycopersicum 418

13.4 Application in Phenomics-Assisted Breeding 419

13.4.1 Integrated -omics 419

13.4.2 Databases 420

References 421

14. Role of Bioinformatics as a Tool in Tomato Research 428

Catherine M. Ronning 428

14.1 Introduction 428

14.2 Gene and Genome Databases 429

14.2.1 International Tomato Genome Sequencing Project 430

14.2.2 Solanum lycopersicum Plant Genome Database (S1GDB) 431

14.2.3 Solanaceae Genomics Resource 432

14.2.4 Tomato Genome Project at NCBI 433

14.2.5 C.M. Rick Tomato Genetics Resource Center (TGRC) 433

14.2.6 Genes That Make Tomatoes 434

14.2.7 Real-Time QTL (RTQ) 434

14.2.8 Other Plant Resources 434

14.3 Comparative Genome Databases 435

14.4 Gene Expression Databases 436

14.4.1 Tomato Gene Index (at DFCI) 437

14.4.2 Tomato Functional Genomics Database (TFGD) 439

14.4.3 Kazusa Micro-Tom Database (MiBase) 439

14.4.4 Kazusa Full-Length Tomato cDNA Database (KafTorrU) 440

14.4.5 Affymetrix GeneChip® Tomato Genome Array 440

14.4.6 RNA-Seq 440

14.4.7 Applications 440

14.5 Molecular Marker and Genetic Map Databases 442

14.5.1 Maps 443

14.5.1.1 Genetic Maps 443

14.5.1.2 Physical Map 444
14.5.1.3 Cytological Map 444
14.5.1.4 Sequence Progress Map 444
14.5.1.5 Other Maps 445
14.5.2 Transposon Tagging 445
14.5.3 Targeting Induced Local Lesions IN Genomes (TILLING) 445
14.6 Protein and Metabolome Databases 446
14.6.1 Tomato Metabolite Data at TFGD 446
14.6.2 Secretom 446
14.6.3 Other Plant Resources 447
14.6.4 Applications 448
14.7 Integration of Different Data Types 449
14.7.1 The SOL Genomics Network (SGN) 449
14.7.2 Solanaceous MapMan 450
14.7.3 Fruit Biology Laboratory at INRA Bordeaux 450
14.7.4 MIPSPlantsDB 451
14.7.5 Other Resources 451
14.7.6 Applications 452
14.8 Conclusions 453
Acknowledgements 453
References 454

Index 459
Color Plate Section 469