Contents

List of contributors xi

1 Circuit quantum electrodynamics with a nonlinear resonator 1
 P. Bertet, F. R. Ong, M. Boissonneault, A. Bolduc, F. Mallet, A. C. Doherty,
 A. Blais, D. Vion, and D. Esteve
 1.1 Presentation of the system 2
 1.2 Semiclassical dynamics of the nonlinear resonator 7
 1.3 High-fidelity qubit readout by a nonlinear resonator 12
 1.4 Backaction of a driven Kerr resonator on a qubit 17
 1.5 Conclusion 28
 References 29

2 Quantum-classical correspondence for a dc-biased cavity resonator-Cooper-pair transistor system 33
 M. P. Blencowe, A. D. Armour, and A. J. Rimberg
 2.1 Introduction 33
 2.2 The cavity-Cooper-pair transistor device 36
 2.3 Classical model of device 37
 2.4 Classical dynamics 41
 2.5 Quantum model of device 44
 2.6 Quantum dynamics 49
 2.7 Classical limit 51
 2.8 Conclusion 55
 Acknowledgments 56
 References 56

3 Activated switching in nonlinear micromechanical resonators 59
 H. B. Chan and C. Stambaugh
 3.1 Introduction 59
 3.2 Micromechanical torsional oscillator 60
 3.3 Switching-path distribution 67
 3.4 Activation barrier scaling near bifurcation points 73
 3.5 Critical kinetic phenomena in resonantly driven oscillators 80
 3.6 Conclusion 88
 Acknowledgments 89
 References 90

4 Measurement and control of quantum cavities with electronic atoms 92
 A. N. Cleland
 4.1 Introduction 92
Contents

4.2 A Josephson junction as a tunable two-level system

4.3 Harmonic oscillators

4.4 Coupled qubit and resonator

References

5 Nondegenerate, three-wave mixing with Josephson junctions

M.H. Devoret, A. Kamal, and B. Abdo

5.1 Introduction

5.2 Input-output treatment of a generic nondegenerate, three-wave mixing device

5.3 Three-wave mixing amplitude

5.4 Limitation of dynamic range due to pump depletion

5.5 Conclusion

Appendix: Quantum signals propagating along a transmission line and input-output formalism

Acknowledgments

References

6 Dynamics of nano-magnetic oscillators

T. Dunn, A. L. Chudnovskiy, and A. Kamenev

6.1 Introduction

6.2 Deterministic dynamics

6.3 Equilibrium stochastic dynamics of magnetization

6.4 Shot-noise and nonequilibrium stochastic dynamics

6.5 Dynamics and optimization of the magnetization switching

6.6 Spectral width of the steady-state precession

6.7 Conclusion

Acknowledgments

References

7 Periodically modulated quantum nonlinear oscillators

M. I. Dykman

7.1 Introduction

7.2 Resonant modulation: quantum heating

7.3 Quantum activation

7.4 Power spectra of modulated quantum oscillators

7.5 Nonresonant modulation: oscillator heating and cooling

7.6 Conclusions

Acknowledgments

References

8 Nonlinear oscillators and high fidelity qubit state measurement in circuit quantum electrodynamics

E. Ginossar, L. S. Bishop, and S. M. Girvin

8.1 Introduction: the high power response of the transmon-cavity system

8.2 Implications of the nonlinearity at the high excitation regime

8.3 Applications for high fidelity qubit state measurement