Advanced Hybrid Powertrains for Commercial Vehicles

By

Haoran Hu
Rudy Smaling
Simon J. Baseley
Contents

Preface ix
Acknowledgments xiii

Chapter 1 Introduction of Hybrid Powertrains for Commercial Vehicles
1.1 Introduction 1
1.2 History of Commercial Vehicles 2
1.3 Commercial Vehicle Classification 5
1.4 Energy Consumption of Commercial Vehicles 7
1.5 Drivers of the Efficient Powertrain for Commercial Vehicles 10
1.6 Classification of Commercial Vehicle Hybrid Powertrains 18
1.7 References 30

Chapter 2 Internal Combustion Engines for Commercial Vehicles 33
2.1 Requirements of Internal Combustion Engines for Commercial Vehicles 33
2.2 Basics of Internal Combustion Engines 34
2.3 Major Engine Components and Subsystems 43
2.4 Engine Operating Characteristics 57
2.5 Advanced Engine Technologies 60
2.6 References 70

Chapter 3 Introduction of Clutches and Transmissions for Commercial Vehicles 73
3.1 Background of Transmissions 73
3.2 Key Characteristics of Vehicle Transmissions 77
3.3 Key Components of Commercial Vehicle Drivetrains 81
3.4 Manual Transmission 88
Chapter 6 (continued)

6.7 Electric Motor Characteristics 197
6.8 References 202

Chapter 7 Hydraulic Hybrid Powertrain System Design 203

7.1 Introduction 203
7.2 Hydraulic Hybrid System Architecture 208
7.3 Design and Specification of Hydraulic Hybrid Systems 213
7.4 Examples of Systems at or near Production Application 220
7.5 References 226

Chapter 8 Hydraulic Hybrid Components and Controls 229

8.1 Introduction 229
8.2 Hydraulic Pumps and Motors 229
8.3 Valves 245
8.4 Pipes and Fittings 247
8.5 Hydraulic Oils and Related Systems 248
8.6 Control Units and Transducers 254
8.7 References 255

Chapter 9 Fuel Cell Hybrid Powertrain Systems 257

9.1 Fuel Cell Hybrid Powertrain 257
9.2 Operating Principles of Fuel Cells 258
9.3 Polymer Electrolyte Membrane (PEM) Fuel Cells for Commercial Vehicles 262
9.4 Solid Oxide Fuel Cells Auxiliary Power Unit (APU) and Range Extender 267
9.5 References 279
9.6 Appendix: Comparison of Fuel Cell Technologies 281

Chapter 10 Commercial Vehicle Electrification 283

10.1 Introduction 283
10.2 Idle Reduction Technologies 284
Contents

Chapter 10 (continued)

10.3 Electrically Driven Boost System and Other Components
10.4 Electrification for Plug-in Hybrid Commercial Vehicles
10.5 External Charging and Plug-in Hybrid Commercial Vehicles
10.6 References

Chapter 11 Hybrid Powertrain System Modeling, Simulation, Validation, and Certification
11.1 Model-based Control System Development
11.2 Models for Hybrid-electric Powertrains of Commercial Vehicles
11.3 Dynamic Modeling of Hybrid-electric Powertrain System
11.4 System Control and Optimization for Hydraulic Hybrid Vehicles
11.5 Model-based Test and Validation
11.6 Hybrid Vehicle Certification
11.7 References
11.8 Appendix: Drive Cycles

Chapter 12 Sustainable Transportation and Future Powertrain Technologies
12.1 Introduction
12.2 PHEV and Battery Charger
12.3 Intelligent Transportation System, Smart Grid, and Multimodal Transportation
12.4 Government Regulations and Incentives
12.5 Future Powertrain Technologies and System Solutions for Sustainable Transportation
12.6 References

Index

About the Authors