CONTENTS

Preface xxvii
Acknowledgments xxix
Contributors xxxv

1 Introduction to Emotion Recognition 1
Amit Konar, Anisha Halder, and Aruna Chakraborty

1.1 Basics of Pattern Recognition, 1
1.2 Emotion Detection as a Pattern Recognition Problem, 2
1.3 Feature Extraction, 3
 1.3.1 Facial Expression-Based Features, 3
 1.3.2 Voice Features, 7
 1.3.3 EEG Features Used for Emotion Recognition, 9
 1.3.4 Gesture- and Posture-Based Emotional Features, 11
 1.3.5 Multimodal Features, 12
1.4 Feature Reduction Techniques, 15
 1.4.1 Principal Component Analysis, 15
 1.4.2 Independent Component Analysis, 16
 1.4.3 Evolutionary Approach to Nonlinear Feature Reduction, 16
1.5 Emotion Classification, 17
 1.5.1 Neural Classifier, 17
 1.5.2 Fuzzy Classifiers, 21
 1.5.3 Hidden Markov Model Based Classifiers, 22
 1.5.4 k-Nearest Neighbor Algorithm, 22
 1.5.5 Naive Bayes Classifier, 23
4 A Subject-Dependent Facial Expression Recognition System 89
Chuan-Yu Chang and Yan-Chiang Huang

4.1 Introduction, 89
4.2 Proposed Method, 91
4.2.1 Face Detection, 91
4.2.2 Preprocessing, 92
4.2.3 Facial Feature Extraction, 95
4.2.4 Face Recognition, 98
4.2.5 Facial Expression Recognition, 99
4.3 Experiment Result, 103
4.3.1 Parameter Determination of the RBFNN, 105
4.3.2 Comparison of Facial Features, 107
4.3.3 Comparison of Face Recognition Using “Inner Face” and Full Face, 108
4.3.4 Comparison of Subject-Dependent and Subject-Independent Facial Expression Recognition Systems, 108
4.3.5 Comparison with Other Approaches, 109
4.4 Conclusion, 109
Acknowledgment, 110
References, 110
Author Biographies, 112

5 Facial Expression Recognition Using Independent Component Features and Hidden Markov Model 113
Md. Zia Uddin and Tae-Seong Kim

5.1 Introduction, 114
5.2 Methodology, 115
5.2.1 Expression Image Preprocessing, 115
5.2.2 Feature Extraction, 116
5.2.3 Codebook and Code Generation, 121
5.2.4 Expression Modeling and Training Using HMM, 121
5.3 Experimental Results, 123
5.4 Conclusion, 125
Acknowledgments, 125
References, 126
Author Biographies, 127

6 Feature Selection for Facial Expression Based on Rough Set Theory 129
Yong Yang and Guoyin Wang

6.1 Introduction, 129
6.2 Feature Selection for Emotion Recognition Based on Rough Set Theory, 131
6.2.1 Basic Concepts of Rough Set Theory, 131
6.2.2 Feature Selection Based on Rough Set and Domain-Oriented Data-Driven Data Mining Theories, 133
6.2.3 Attribute Reduction for Emotion Recognition, 136

6.3 Experiment Results and Discussion, 137
6.3.1 Experiment Condition, 137
6.3.2 Experiments for Feature Selection Method for Emotion Recognition, 139
6.3.3 Experiments for the Features Concerning Mouth for Emotion Recognition, 141

6.4 Conclusion, 143
Acknowledgments, 143
References, 143
Author Biographies, 145

7 Emotion Recognition from Facial Expressions Using Type-2 Fuzzy Sets
Anisha Halder, Amit Konar, Aruna Chakraborty, and Atulya K. Nagar

7.1 Introduction, 148
7.2 Preliminaries on Type-2 Fuzzy Sets, 150
7.2.1 Type-2 Fuzzy Sets, 150
7.3 Uncertainty Management in Fuzzy-Space for Emotion Recognition, 152
7.3.1 Principles Used in the IT2FS Approach, 153
7.3.2 Principles Used in the GT2FS Approach, 155
7.3.3 Methodology, 156
7.4 Fuzzy Type-2 Membership Evaluation, 157
7.5 Experimental Details, 161
7.5.1 Feature Extraction, 161
7.5.2 Creating the Type-2 Fuzzy Face-Space, 164
7.5.3 Emotion Recognition of an Unknown Facial Expression, 165
7.6 Performance Analysis, 167
7.6.1 The McNemar’s Test, 169
7.6.2 Friedman Test, 171
7.6.3 The Confusion Matrix-Based RMS Error, 173
7.7 Conclusion, 175
References, 176
Author Biographies, 180

8 Emotion Recognition from Non-frontal Facial Images
Wenming Zheng, Hao Tang, and Thomas S. Huang

8.1 Introduction, 184
8.2 A Brief Review of Automatic Emotional Expression Recognition, 187
8.2.1 Framework of Automatic Facial Emotion Recognition System, 187
8.2.2 Extraction of Geometric Features, 189
8.2.3 Extraction of Appearance Features, 190
8.3 Databases for Non-frontal Facial Emotion Recognition, 191
8.3.1 BU-3DFE Database, 192
8.3.2 BU-4DFE Database, 194
8.3.3 CMU Multi-PIE Database, 195
8.3.4 Bosphorus 3D Database, 195
8.4 Recent Advances of Emotion Recognition from Non-Frontal Facial Images, 196
8.4.1 Emotion Recognition from 3D Facial Models, 196
8.4.2 Emotion Recognition from Non-frontal 2D Facial Images, 197
8.5 Discussions and Conclusions, 205
Acknowledgments, 206
References, 206
Author Biographies, 211

9 Maximum a Posteriori Based Fusion Method for Speech Emotion Recognition 215
Ling Cen, Zhu Liang Yu, and Wee Ser
9.1 Introduction, 216
9.2 Acoustic Feature Extraction for Emotion Recognition, 219
9.3 Proposed Map-Based Fusion Method, 223
9.3.1 Base Classifiers, 224
9.3.2 MAP-Based Fusion, 225
9.3.3 Addressing Small Training Dataset Problem—Calculation of \(f_{i|C_k}(c_r) \), 226
9.3.4 Training and Testing Procedure, 228
9.4 Experiment, 229
9.4.1 Database, 229
9.4.2 Experiment Description, 229
9.4.3 Results and Discussion, 230
9.5 Conclusion, 232
References, 232
Author Biographies, 234

10 Emotion Recognition in Naturalistic Speech and Language—A Survey 237
Felix Weninger, Martin Wöllmer, and Björn Schuller
10.1 Introduction, 238
10.2 Tasks and Applications, 239
10.2.1 Use-Cases for Automatic Emotion Recognition from Speech and Language, 239
10.2.2 Databases, 241
10.2.3 Modeling and Annotation: Categories versus Dimensions, 242
10.2.4 Unit of Analysis, 243
xii CONTENTS

10.3 Implementation and Evaluation, 244
 10.3.1 Feature Extraction, 245
 10.3.2 Feature and Instance Selection, 247
 10.3.3 Classification and Learning, 248
 10.3.4 Partitioning and Evaluation, 250
 10.3.5 Research Toolkits and Open-Source Software, 252

10.4 Challenges, 253
 10.4.1 Non-prototypicality, Reliability, and Class Sparsity, 253
 10.4.2 Generalization, 255
 10.4.3 Real-Time Processing, 256
 10.4.4 Acoustic Environments: Noise and Reverberation, 256

10.5 Conclusion and Outlook, 257

Acknowledgment, 259
References, 259
Author Biographies, 267

11 EEG-Based Emotion Recognition Using Advanced Signal Processing Techniques
 Panagiotis C. Petrantonakis and Leontios J. Hadjileontiadis

11.1 Introduction, 270
11.2 Brain Activity and Emotions, 271
11.3 EEG-ER Systems: An Overview, 272
11.4 Emotion Elicitation, 273
 11.4.1 Discrete Emotions, 273
 11.4.2 Affective States, 274
 11.4.3 Datasets, 274
11.5 Advanced Signal Processing in EEG-ER, 275
 11.5.1 Discrete Emotions, 275
 11.5.2 Affective States, 280
11.6 Concluding Remarks and Future Directions, 287

References, 289
Author Biographies, 292

12 Frequency Band Localization on Multiple Physiological Signals for Human Emotion Classification Using DWT
 M. Murugappan

12.1 Introduction, 296
12.2 Related Work, 297
12.3 Research Methodology, 299
 12.3.1 Physiological Signals Acquisition, 299
 12.3.2 Preprocessing and Normalization, 302
 12.3.3 Feature Extraction, 303
 12.3.4 Emotion Classification, 305
13 Toward Affective Brain–Computer Interface: Fundamentals and Analysis of EEG-Based Emotion Classification 315
Yuan-Pii Lin, Tzyy-Ping Jung, Yijun Wang, and Julie Onton

13.1 Introduction, 316
13.1.1 Brain–Computer Interface, 316
13.1.2 EEG Dynamics Associated with Emotion, 317
13.1.3 Current Research in EEG-Based Emotion Classification, 319
13.1.4 Addressed Issues, 322
13.2 Materials and Methods, 323
13.2.1 EEG Dataset, 323
13.2.2 EEG Feature Extraction, 323
13.2.3 EEG Feature Selection, 325
13.2.4 EEG Feature Classification, 325
13.3 Results and Discussion, 327
13.3.1 Superiority of Differential Power Asymmetry, 327
13.3.2 Gender Independence in Differential Power Asymmetry, 328
13.3.3 Channel Reduction from Differential Power Asymmetry, 330
13.3.4 Generalization of Differential Power Asymmetry, 331
13.4 Conclusion, 332
13.5 Issues and Challenges Toward ABCIs, 332
13.5.1 Directions for Improving Estimation Performance, 333
13.5.2 Online System Implementation, 334
Acknowledgments, 336
References, 336
Author Biographies, 340

14 Bodily Expression for Automatic Affect Recognition 343
Hatice Gunes, Caifeng Shan, Shizhi Chen, and YingLi Tian

14.1 Introduction, 344
14.2 Background and Related Work, 345
14.2.1 Body as an Autonomous Channel for Affect Perception and Analysis, 346
14.2.2 Body as an Additional Channel for Affect Perception and Analysis, 350
14.2.3 Bodily Expression Data and Annotation, 352
14.3 Creating a Database of Facial and Bodily Expressions: The FABO Database, 353
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4 Automatic Recognition of Affect from Bodily Expressions</td>
<td>356</td>
</tr>
<tr>
<td>14.4.1 Body as an Autonomous Channel for Affect Analysis</td>
<td>356</td>
</tr>
<tr>
<td>14.4.2 Body as an Additional Channel for Affect Analysis</td>
<td>358</td>
</tr>
<tr>
<td>14.5 Automatic Recognition of Bodily Expression Temporal Dynamics</td>
<td>361</td>
</tr>
<tr>
<td>14.5.1 Feature Extraction</td>
<td>362</td>
</tr>
<tr>
<td>14.5.2 Feature Representation and Combination</td>
<td>364</td>
</tr>
<tr>
<td>14.5.3 Experiments</td>
<td>365</td>
</tr>
<tr>
<td>14.6 Discussion and Outlook</td>
<td>367</td>
</tr>
<tr>
<td>14.7 Conclusions</td>
<td>369</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>370</td>
</tr>
<tr>
<td>References</td>
<td>370</td>
</tr>
<tr>
<td>Author Biographies</td>
<td>375</td>
</tr>
</tbody>
</table>

15 Building a Robust System for Multimodal Emotion Recognition

Johannes Wagner, Florian Lingenfelser, and Elisabeth André

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>380</td>
</tr>
<tr>
<td>15.2 Related Work</td>
<td>381</td>
</tr>
<tr>
<td>15.3 The Callas Expressivity Corpus</td>
<td>382</td>
</tr>
<tr>
<td>15.3.1 Segmentation of Data</td>
<td>383</td>
</tr>
<tr>
<td>15.3.2 Emotion Modeling</td>
<td>383</td>
</tr>
<tr>
<td>15.3.3 Annotation</td>
<td>384</td>
</tr>
<tr>
<td>15.4 Methodology</td>
<td>386</td>
</tr>
<tr>
<td>15.4.1 Classification Model</td>
<td>386</td>
</tr>
<tr>
<td>15.4.2 Feature Extraction</td>
<td>387</td>
</tr>
<tr>
<td>15.4.3 Speech Features</td>
<td>387</td>
</tr>
<tr>
<td>15.4.4 Facial Features</td>
<td>389</td>
</tr>
<tr>
<td>15.4.5 Feature Selection</td>
<td>389</td>
</tr>
<tr>
<td>15.4.6 Recognizing Missing Data</td>
<td>390</td>
</tr>
<tr>
<td>15.5 Multisensor Data Fusion</td>
<td>390</td>
</tr>
<tr>
<td>15.5.1 Feature-Level Fusion</td>
<td>390</td>
</tr>
<tr>
<td>15.5.2 Ensemble-Based Systems and Decision-Level Fusion</td>
<td>391</td>
</tr>
<tr>
<td>15.6 Experiments</td>
<td>395</td>
</tr>
<tr>
<td>15.6.1 Evaluation Method</td>
<td>396</td>
</tr>
<tr>
<td>15.6.2 Results</td>
<td>396</td>
</tr>
<tr>
<td>15.6.3 Discussion</td>
<td>397</td>
</tr>
<tr>
<td>15.6.4 Contradictory Cues</td>
<td>397</td>
</tr>
<tr>
<td>15.7 Online Recognition System</td>
<td>399</td>
</tr>
<tr>
<td>15.7.1 Social Signal Interpretation</td>
<td>399</td>
</tr>
<tr>
<td>15.7.2 Synchronized Data Recording and Annotation</td>
<td>400</td>
</tr>
<tr>
<td>15.7.3 Feature Extraction and Model Training</td>
<td>401</td>
</tr>
<tr>
<td>15.7.4 Online Classification</td>
<td>401</td>
</tr>
<tr>
<td>15.8 Conclusion</td>
<td>403</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>404</td>
</tr>
<tr>
<td>References</td>
<td>404</td>
</tr>
<tr>
<td>Author Biographies</td>
<td>410</td>
</tr>
</tbody>
</table>
16 Semantic Audiovisual Data Fusion for Automatic Emotion Recognition 411
Dragos Datcu and Leon J. M. Rothkrantz

16.1 Introduction, 412
16.2 Related Work, 413
16.3 Data Set Preparation, 416
16.4 Architecture, 418
 16.4.1 Classification Model, 418
 16.4.2 Emotion Estimation from Speech, 419
 16.4.3 Video Analysis, 420
 16.4.4 Fusion Model, 428
16.5 Results, 431
16.6 Conclusion, 432
References, 432
Author Biographies, 434

17 A Multilevel Fusion Approach for Audiovisual Emotion Recognition 437
Girija Chetty, Michael Wagner, and Roland Goecke

17.1 Introduction, 437
17.2 Motivation and Background, 438
17.3 Facial Expression Quantification, 440
17.4 Experiment Design, 444
 17.4.1 Data Corpora, 444
 17.4.2 Facial Deformation Features, 445
 17.4.3 Marker-Based Audio Visual Features, 447
 17.4.4 Expression Classification and Multilevel Fusion, 448
17.5 Experimental Results and Discussion, 450
 17.5.1 Facial Expression Quantification, 450
 17.5.2 Facial Expression Classification Using SVDF and VDF Features, 451
 17.5.3 Audiovisual Fusion Experiments, 451
17.6 Conclusion, 456
References, 456
Author Biographies, 459

18 From a Discrete Perspective of Emotions to Continuous, Dynamic, and Multimodal Affect Sensing 461
Isabelle Hupont, Sergio Ballano, Eva Cerezo, and Sandra Baldassarri

18.1 Introduction, 462
18.2 A Novel Method for Discrete Emotional Classification of Facial Images, 465
 18.2.1 Selection and Extraction of Facial Inputs, 465
18.2.2 Classifiers Selection and Combination, 467
18.2.3 Results, 468
18.3 A 2D Emotional Space for Continuous and Dynamic Facial Affect Sensing, 469
 18.3.1 Facial Expressions Mapping to the Whissell Affective Space, 469
 18.3.2 From Still Images to Video Sequences through 2D Emotional Kinematics Modeling, 473
18.4 Expansion to Multimodal Affect Sensing, 474
 18.4.1 Step 1: 2D Emotional Mapping to the Whissell Space, 477
 18.4.2 Step 2: Temporal Fusion of Individual Modalities to Obtain a Continuous 2D Emotional Path, 477
 18.4.3 Step 3: “Emotional Kinematics” Path Filtering, 478
18.5 Building Tools That Care, 479
 18.5.1 T-EDUCO: A T-learning Tutoring Tool, 479
 18.5.2 Multimodal Fusion Application to Instant Messaging, 482
18.6 Concluding Remarks and Future Work, 486
Acknowledgments, 488
References, 488
Author Biographies, 491

19 Audiovisual Emotion Recognition Using Semi-Coupled Hidden Markov Model with State-Based Alignment Strategy 493
Chung-Hsien Wu, Jen-Chun Lin, and Wen-Li Wei
19.1 Introduction, 494
19.2 Feature Extraction, 495
 19.2.1 Facial Feature Extraction, 496
 19.2.2 Prosodic Feature Extraction, 498
19.3 Semi-Coupled Hidden Markov Model, 500
 19.3.1 Model Formulation, 500
 19.3.2 State-Based Bimodal Alignment Strategy, 502
19.4 Experiments, 504
 19.4.1 Data Collection, 504
 19.4.2 Experimental Results, 506
19.5 Conclusion, 508
References, 509
Author Biographies, 512

20 Emotion Recognition in Car Industry 515
Christos D. Katsis, George Rigas, Yorgos Goletsis, and Dimitrios I. Fotiadis
20.1 Introduction, 516
20.2 An Overview of Application for the Car Industry, 517
20.3 Modality-Based Categorization, 517
 20.3.1 Video-Image-Based Emotion Recognition, 518
 20.3.2 Speech Based Emotion Recognition, 518
20.3.3 Biosignal-Based Emotion Recognition, 519
20.3.4 Multimodal Based Emotion Recognition, 519
20.4 Emotion-Based Categorization, 520
 20.4.1 Stress, 520
 20.4.2 Fatigue, 521
 20.4.3 Confusion and Nervousness, 522
 20.4.4 Distraction, 522
20.5 Two Exemplar Cases, 523
 20.5.1 AUBADE, 523
 20.5.2 I-Way, 530
 20.5.3 Results, 535
20.6 Open Issues and Future Steps, 536
20.7 Conclusion, 537
References, 537
Author Biographies, 543

Index 545