3 Aircraft Conceptual Design

3.1 Introduction 49
3.2 Primary Functions of Aircraft Components 50
3.3 Aircraft Configuration Alternatives 52
 3.3.1 Wing Configuration 53
 3.3.2 Tail Configuration 55
 3.3.3 Propulsion System Configuration 55
 3.3.4 Landing Gear Configuration 56
 3.3.5 Fuselage Configuration 58
 3.3.6 Manufacturing-Related Items Configuration 58
 3.3.7 Subsystems Configuration 59
3.4 Aircraft Classification and Design Constraints 62
3.5 Configuration Selection Process and Trade-Off Analysis 68
3.6 Conceptual Design Optimization 74
 3.6.1 Mathematical Tools 74
 3.6.2 Methodology 76
Problems 86
References 92

4 Preliminary Design

4.1 Introduction 93
4.2 Maximum Take-Off Weight Estimation 94
 4.2.1 The General Technique 94
 4.2.2 Weight Build-up 95
 4.2.3 Payload Weight 96
 4.2.4 Crew Weight 97
 4.2.5 Fuel Weight 100
 4.2.6 Empty Weight 108
 4.2.7 Practical Steps of the Technique 112
4.3 Wing Area and Engine Sizing 113
 4.3.1 Summary of the Technique 113
 4.3.2 Stall Speed 118
 4.3.3 Maximum Speed 120
 4.3.4 Take-Off Run 131
 4.3.5 Rate of Climb 136
 4.3.6 Ceiling 140
4.4 Design Examples 145
Problems 155
References 158
Contents

5 Wing Design

5.1 Introduction 161
5.2 Number of Wings 164
5.3 Wing Vertical Location
 5.3.1 High Wing 165
 5.3.2 Low Wing 168
 5.3.3 Mid-Wing 169
 5.3.4 Parasol Wing 169
 5.3.5 The Selection Process 169
5.4 Airfoil Section
 5.4.1 Airfoil Design or Airfoil Selection 171
 5.4.2 General Features of an Airfoil 173
 5.4.3 Characteristic Graphs of an Airfoil 176
 5.4.4 Airfoil Selection Criteria 182
 5.4.5 NACA Airfoils 183
 5.4.6 Practical Steps for Wing Airfoil Section Selection 188
5.5 Wing Incidence 195
5.6 Aspect Ratio 198
5.7 Taper Ratio 203
5.8 The Significance of Lift and Load Distributions 206
5.9 Sweep Angle 209
5.10 Twist Angle 223
5.11 Dihedral Angle 226
5.12 High-Lift Device
 5.12.1 The Functions of a High-Lift Device 230
 5.12.2 High-Lift Device Classification 232
 5.12.3 Design Technique 235
5.13 Aileron 241
5.14 Lifting-Line Theory 242
5.15 Accessories
 5.15.1 Strake 247
 5.15.2 Fence 247
 5.15.3 Vortex Generator 248
 5.15.4 Winglet 248
5.16 Wing Design Steps 249
5.17 Wing Design Example 250
Problems 259
References 264

6 Tail Design

6.1 Introduction 265
6.2 Aircraft Trim Requirements
 6.2.1 Longitudinal Trim 270
 6.2.2 Directional and Lateral Trim 276
6.3 A Review on Stability and Control 278
Problems 280
References 284
7.5.9 Cockpit Integration 359
7.6 Passenger Cabin Design 360
7.7 Cargo Section Design 368
7.8 Optimum Length-to-Diameter Ratio 372
 7.8.1 Optimum Slenderness Ratio for Lowest f_{LD} 372
 7.8.2 Optimum Slenderness Ratio for Lowest Fuselage Wetted Area 378
 7.8.3 Optimum Slenderness Ratio for the Lightest Fuselage 380
7.9 Other Fuselage Internal Segments 380
 7.9.1 Fuel Tanks 381
 7.9.2 Radar Dish 385
 7.9.3 Wing Box 386
 7.9.4 Power Transmission Systems 387
7.10 Lofting 388
 7.10.1 Aerodynamics Considerations 388
 7.10.2 Area Ruling 390
 7.10.3 Radar Detectability 392
 7.10.4 Fuselage Rear Section 392
7.11 Fuselage Design Steps 394
7.12 Design Example 395
Problems 406
References 406

8 Propulsion System Design 413
8.1 Introduction 413
8.2 Functional Analysis and Design Requirements 414
8.3 Engine Type Selection 416
 8.3.1 Aircraft Engine Classification 417
 8.3.2 Selection of Engine Type 428
8.4 Number of Engines 436
 8.4.1 Flight Safety 437
 8.4.2 Other Influential Parameters 438
8.5 Engine Location 439
 8.5.1 Design Requirements 439
 8.5.2 General Guidelines 441
 8.5.3 Podded versus Buried 443
 8.5.4 Pusher versus Tractor 444
 8.5.5 Twin-Jet Engine: Under-Wing versus Rear Fuselage 446
8.6 Engine Installation 448
 8.6.1 Prop-Driven Engine 450
 8.6.2 Jet Engine 452
8.7 Propeller Sizing 456
8.8 Engine Performance 461
 8.8.1 Prop-Driven Engine 461
 8.8.2 Jet Engine 462
8.9 Engine Selection 462
10.4.2 Horizontal Tail Weight 561
10.4.3 Vertical Tail Weight 561
10.4.4 Fuselage Weight 562
10.4.5 Landing Gear Weight 563
10.4.6 Installed Engine Weight 564
10.4.7 Fuel System Weight 564
10.4.8 Weight of Other Equipment and Subsystems 565
10.5 Chapter Examples 565
Problems 570
References 573

11 Aircraft Weight Distribution 575
11.1 Introduction 575
11.2 Aircraft Center of Gravity Calculation 578
11.3 Center of Gravity Range 585
11.3.1 Fixed or Variable Center of Gravity 585
11.3.2 Center of Gravity Range Definition 586
11.3.3 Ideal Center of Gravity Location 587
11.4 Longitudinal Center of Gravity Location 590
11.5 Technique to Determine the Aircraft Forward and Aft Center of Gravity 598
11.6 Weight Distribution Technique 606
11.6.1 Fundamentals of Weight Distribution 607
11.6.2 Longitudinal Stability Requirements 609
11.6.3 Longitudinal Controllability Requirements 611
11.6.4 Longitudinal Handling Quality Requirements 613
11.7 Aircraft Mass Moment of Inertia 615
11.8 Chapter Example 620
Problems 624
References 630

12 Design of Control Surfaces 631
12.1 Introduction 631
12.2 Configuration Selection of Control Surfaces 637
12.3 Handling Qualities 638
12.3.1 Definitions 640
12.3.2 Longitudinal Handling Qualities 643
12.3.3 Lateral-Directional Handling Qualities 647
12.4 Aileron Design 654
12.4.1 Introduction 654
12.4.2 Principles of Aileron Design 656
12.4.3 Aileron Design Constraints 664
12.4.4 Steps in Aileron Design 669
12.5 Elevator Design 670
12.5.1 Introduction 670
12.5.2 Principles of Elevator Design 672
12.5.3 Take-Off Rotation Requirement 676