ENCOUNTERS
with
CHAOs AND FRACTALS
Second Edition

Denny Gulick
University of Maryland
College Park, USA
CONTENTS

Preface xi

Introduction xv

1. Periodic Points 1
 1.1 Iterates of Functions 1
 1.2 Fixed Points 6
 1.3 Periodic Points 17
 1.4 Families of Functions 26
 1.5 The Quadratic Family 38
 1.6 Bifurcations 48
 1.7 Period-3 Points 57
 1.8 The Schwarzian Derivative 66

2. One-Dimensional Chaos 79
 2.1 Chaos 79
 2.2 Transitivity and Strong Chaos 91
 2.3 Conjugacy 99
 2.4 Cantor Sets 107

3. Two-Dimensional Chaos 123
 3.1 Review of Matrices 123
 3.2 Dynamics of Linear Functions 132
 3.3 Nonlinear Maps 147
 3.4 The Hénon Map 158
3.5 The Horseshoe Map 167

4. Systems of Differential Equations 179
 4.1 Review of Systems of Differential Equations 179
 4.2 Almost Linearity 195
 4.3 The Pendulum 204
 4.4 The Lorenz System 212

5. Introduction to Fractals 221
 5.1 Self-Similarity 221
 5.2 The Sierpiński Gasket and Other “Monsters” 229
 5.3 Space-Filling Curves 238
 5.4 Similarity and Capacity Dimensions 246
 5.5 Lyapunov Dimension 257
 5.6 Calculating Fractal Dimensions of Objects 263

6. Creating Fractals Sets 269
 6.1 Metric Spaces 269
 6.2 The Hausdorff Metric 276
 6.3 Contractions and Affine Functions 283
 6.4 Iterated Function Systems 292
 6.5 Algorithms for Drawing Fractals 299

7. Complex Fractals : Julia Sets and the Mandelbrot Set 311
 7.1 Complex Numbers and Functions 311
 7.2 Julia Sets 324
Appendix : Computer Programs 344

Program 1: ITERATE 344
Program 2: NUMBER OF ITERATES 344
Program 3: PLOT 345
Program 4: BIFURCATION 346
Program 5: HENON 347
Program 6: JULIA 348
Program 7: MANDELBROT 349
Program 8: ITERATED FUNCTION SYSTEM 350
Program 9: FERN LEAF 351
Program 10: CHAOS GAME 352

Answers to Selected Exercises 353

References 363

Index 367